• Title/Summary/Keyword: Data Scalability Problem

Search Result 116, Processing Time 0.028 seconds

A Hybrid Blockchain-Based E-Voting System with BaaS (BaaS를 이용한 하이브리드 블록체인 기반 전자투표 시스템)

  • Kang Myung Joe;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.253-262
    • /
    • 2023
  • E-voting is a concept that includes actions such as kiosk voting at a designated place and internet voting at an unspecified place, and has emerged to alleviate the problem of consuming a lot of resources and costs when conducting offline voting. Using E-voting has many advantages over existing voting systems, such as increased efficiency in voting and ballot counting, reduced costs, increased voting rate, and reduced errors. However, centralized E-voting has not received attention in public elections and voting on corporate agendas because the results of voting cannot be trusted due to concerns about data forgery and modulation and hacking by others. In order to solve this problem, recently, by designing an E-voting system using blockchain, research has been actively conducted to supplement concepts lacking in existing E-voting, such as increasing the reliability of voting information and securing transparency. In this paper, we proposed an electronic voting system that introduced hybrid blockchain that uses public and private blockchains in convergence. A hybrid blockchain can solve the problem of slow transaction processing speed, expensive fee by using a private blockchain, and can supplement for the lack of transparency and data integrity of transactions through a public blockchain. In addition, the proposed system is implemented as BaaS to ensure the ease of type conversion and scalability of blockchain and to provide powerful computing power. BaaS is an abbreviation of Blockchain as a Service, which is one of the cloud computing technologies and means a service that provides a blockchain platform ans software through the internet. In this paper, in order to evaluate the feasibility, the proposed system and domestic and foreign electronic voting-related studies are compared and analyzed in terms of blockchain type, anonymity, verification process, smart contract, performance, and scalability.

Data Aggregation Method Guaranteeing Minimum Traffic in Multi-hop Automatic Meter Reading Networks (다중 홉 원격검침망에서의 최소 트래픽 보장을 위한 데이터 수집기법에 관한 연구)

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.848-857
    • /
    • 2011
  • Due to the advantages of a conveniet, inexpensive installation, flexibility, and scalability, Wireless AMR systems are recently preferred over wired AMR systems. However, a multi-hop supported AMR network, which generally covers large areas, may create energy wastage problem, energy unbalance, and high interference hazard due to a large amount of concurrent-intensive metering data in the network. Therefore in this paper we propose a novel data gathering method which can solve abovementioned problems as well as conserve energy, by reducing the traffic in the network. In addition, the experimental results demonstrate that the proposed scheme shows superior performance to the conventional data transmission method.

A Study on Scalability of Profiling Method Based on Hardware Performance Counter for Optimal Execution of Supercomputer (슈퍼컴퓨터 최적 실행 지원을 위한 하드웨어 성능 카운터 기반 프로파일링 기법의 확장성 연구)

  • Choi, Jieun;Park, Guenchul;Rho, Seungwoo;Park, Chan-Yeol
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.221-230
    • /
    • 2020
  • Supercomputer that shares limited resources to multiple users needs a way to optimize the execution of application. For this, it is useful for system administrators to get prior information and hint about the applications to be executed. In most high-performance computing system operations, system administrators strive to increase system productivity by receiving information about execution duration and resource requirements from users when executing tasks. They are also using profiling techniques that generates the necessary information using statistics such as system usage to increase system utilization. In a previous study, we have proposed a scheduling optimization technique by developing a hardware performance counter-based profiling technique that enables characterization of applications without further understanding of the source code. In this paper, we constructed a profiling testbed cluster to support optimal execution of the supercomputer and experimented with the scalability of the profiling method to analyze application characteristics in the built cluster environment. Also, we experimented that the profiling method can be utilized in actual scheduling optimization with scalability even if the application class is reduced or the number of nodes for profiling is minimized. Even though the number of nodes used for profiling was reduced to 1/4, the execution time of the application increased by 1.08% compared to profiling using all nodes, and the scheduling optimization performance improved by up to 37% compared to sequential execution. In addition, profiling by reducing the size of the problem resulted in a quarter of the cost of collecting profiling data and a performance improvement of up to 35%.

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.

Dynamic Cluster Management of Hadoop Distributed Filesystem (하둡 분산 파일시스템의 동적 클러스터 관리 기법)

  • Ryu, Wooseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.435-437
    • /
    • 2016
  • Hadoop Distributed File System(HDFS) is a file system for distributed processing of big data by replicating data to distributed data nodes. HDFS cluster shows a great scalability up to thousands of nodes, but it assumes a exclusive node cluster with numerous nodes for the big data processing. Various operational-purpose worker systems used by office are hardly considered as a part of cluster. This paper discusses this problem and proposes a dynamic cluster management technique to increase storage capability and analytic performance of hadoop cluster. The propsed technique can add legacy systems to the cluster and can remove them from the cluster dynamically depending on their availability.

  • PDF

Widely Tunable Adaptive Resolution-controlled Read-sensing Reference Current Generation for Reliable PRAM Data Read at Scaled Technologies

  • Park, Mu-hui;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.363-369
    • /
    • 2017
  • Phase-change random access memory (PRAM) has been emerged as a potential memory due to its excellent scalability, non-volatility, and random accessibility. But, as the cell current is reducing due to cell size scaling, the read-sensing window margin is also decreasing due to increased variation of cell performance distribution, resulting in a substantial loss of yield. To cope with this problem, a novel adaptive read-sensing reference current generation scheme is proposed, whose trimming range and resolution are adaptively controlled depending on process conditions. Performance evaluation in a 58-nm CMOS process indicated that the proposed read-sensing reference current scheme allowed the integral nonlinearity (INL) to be improved from 10.3 LSB to 2.14 LSB (79% reduction), and the differential nonlinearity (DNL) from 2.29 LSB to 0.94 LSB (59% reduction).

Recommendation System using 2-Way Hybrid Collaborative Filtering in E-Business (전자상거래에서 2-Way 혼합 협력적 필터링을 이용한 추천 시스템)

  • 김용집;정경용;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.175-178
    • /
    • 2003
  • Two defects have been pointed out in existing user-based collaborative filtering such as sparsity and scalability, and the research has been also made progress, which tries to improve these defects using item-based collaborative filtering. Actually there were many results, but the problem of sparsity still remains because of being based on an explicit data. In addition, the issue has been pointed out. which attributes of item arenot reflected in the recommendation. This paper suggests a recommendation method using nave Bayesian algorithm in hybrid user and item-based collaborative filtering to improve above-mentioned defects of existing item-based collaborative filtering. This method generates a similarity table for each user and item, then it improves the accuracy of prediction and recommendation item using naive Bayesianalgorithm. It was compared and evaluated with existing item-based collaborative filtering technique to estimate the accuracy.

  • PDF

A Multicast ATM Switch Architecture using Shared Bus and Shared Memory Switch (공유 버스와 공유 메모리 스위치를 이용한 멀티캐스트 ATM 스위치 구조)

  • 강행익;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1401-1411
    • /
    • 1999
  • Due to the increase of multimedia services, multicasting is considered as important design factor for ATM switch. To resolve the traffic expansion problem that is occurred by multicast in multistage interconnection networks, this paper proposes the multicast switch using a high-speed bus and a shared memory switch. Since the proposed switch uses a high-speed time division bus as a connection medium and chooses a shared memory switch as a basic switch module, it provides good port scalability. The traffic arbitration scheme enables internal non-blocking. By simulation we proves a good performance in the data throughput and the cell delay.

  • PDF

Mobile Web Service Architecture Using Context-store

  • Oh, Sang-Yoon;Aktas, Mehmet;Fox, Geoffrey C.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.836-858
    • /
    • 2010
  • Web Services allow a user to integrate applications from different platforms and languages. Since mobile applications often run on heterogeneous platforms and conditions, Web Service becomes a popular solution for integrating with server applications. However, because of its verbosity, XML based SOAP messaging gives the possible overhead to the less powerful mobile devices. Based on the mobile client's behavior that it usually exchanges messages with Web Service continuously in a session, we design the Handheld Flexible Representation architecture. Our proposed architecture consists of three main components: optimizing message representation by using a data format language (Simple_DFDL), streaming communication channel to reduce latency and the Context-store to store context information of a session as well as redundant parts of the messages. In this paper, we focus on the Context-store and describe the architecture with the Context-store for improving the performance of mobile Web Service messaging. We verify our approach by conducting various evaluations and investigate the performance and scalability of the proposed architecture. The empirical results show that we save 40% of transit time between a client and a service by reducing the message size. In contrast to solutions for a single problem such as the compression or binarization, our architecture addresses the problem at a system level. Thus, by using the Context-store, we expect reliable recovery from the fault condition and enhancing interoperability as well as improving the messaging performance.

Concurrency Conflicts Resolution for IoT Using Blockchain Technology

  • Morgan, Amr;Tammam, Ashraf;Wahdan, Abdel-Moneim
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.331-340
    • /
    • 2021
  • The Internet of Things (IoT) is a rapidly growing physical network that depends on objects, vehicles, sensors, and smart devices. IoT has recently become an important research topic as it autonomously acquires, integrates, communicates, and shares data directly across each other. The centralized architecture of IoT makes it complex to concurrently access control them and presents a new set of technological limitations when trying to manage them globally. This paper proposes a new decentralized access control architecture to manage IoT devices using blockchain, that proposes a solution to concurrency management problems and enhances resource locking to reduce the transaction conflict and avoids deadlock problems. In addition, the proposed algorithm improves performance using a fully distributed access control system for IoT based on blockchain technology. Finally, a performance comparison is provided between the proposed solution and the existing access management solutions in IoT. Deadlock detection is evaluated with the latency of requesting in order to examine various configurations of our solution for increasing scalability. The main goal of the proposed solution is concurrency problem avoidance in decentralized access control management for IoT devices.