• Title/Summary/Keyword: Data Recycling

Search Result 544, Processing Time 0.028 seconds

The Physico chemical Characteristic of MSW and sludge in west area of Kangwondo (강원도 영서지역 생활폐기물 및 슬러지의 물리·화학적 특성에 관한 연구)

  • Lee, Geon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.112-120
    • /
    • 2004
  • In this study, the physico chemical characteristic of MSW and sludge in west area of Kangwondo was investigated for database, managing the waste and waste treatment facility. The sampling sites were selected as 6 different MSW generation area and 2 sludge generation area. it is necessary to measure the characteristics of MSW to build the data-base. The year of 2000, 197.4ton/day of MSW which was generated in this area. This MSW was composed of 26.6% food wastes, 24.2% of papers, 22.8% of plastics & vinyls, 9.6% of textiles, 3.80% of wood, 2.8% of rubbers & leathers and others, respectively. Most of MSW are composed of food, paper and plastic waste and combustible waste is more than 89%. The generation of papers and vinyls are almost same for different seasons For 3-components of MSW, moisture is 40.2%, combustible component is 52.1% and ash is 7.7% and for 3-components of sludge, moisture is 83.3%, combustible component is 7.7% and ash is 9%. The chemical element has the high order of carbon(51.6%), oxygen(38.6%), hydrogen(7%) on the dry basis of wastes. And the high heating value of MSW is 4989.4 Kcal/kg sludge is 4428.04 Kcal/kg and low heating value of the MSW which is measured by calorimeter is 2032.88kcal/kg. From the leaching test of wastes, there is no heavy metals.

  • PDF

An Energy Characteristics of Carbonization Residue produced from Sewage Sludge Cake (하수슬러지 케익으로부터 생산한 탄화물의 에너지 특성)

  • Rhee, Seung-Whee
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • Sewage sludge cake(SSC) is seriously concerned because ocean dumping, which is the cheapest treatment method now, will be banned in 2012. On the basis of this reason, recycling of SSC is emphasized to convert the treatment method. One of the method to recycling SSC could be carbonization process which also can be reduced greenhouse gas effectively. And carbonization residue of SSC produced by carbonization process can become a renewable energy source. However, carbonization process has not been evaluated by considering basic operating data such as heating value, yield and fuel ratio. In this study, the basic characteristics of SSC such as proximate analysis, elementary analysis and heating value are analyzed. In carbonization process, the effect of carbonization temperature and time on the residue of SSC are estimated. And the analysis is carried out to obtain basic properties of the residue of SSC. From the result of chemical composition of SSC residue, there is 27% of phosphate in SSC. Phosphate will take a role of reductant to convert from hazardous substance to non-hazardous material. As increased carbonization temperature and time, heating value and yield are decreased but fuel ratio(fixed carbon/volatile combustible) of the residue is increased. In the carbonization process, the optimum temperature and time in carbonization test for SSC can be decided by $250^{\circ}C$ and 15 min, respectively. However, the carbonization residue of SSC can not be deserved to use one of renewable energy sources because the heating value at the optimum condition is relatively low. Hence, it is desirable that SSC can be mixed with other organic waste to carbonize.

Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과)

  • Park, Hye-Ri;Nam, Sang-Won;Youm, Kyung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.272-277
    • /
    • 2014
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of $4.5{\sim}23L/m^2{\cdot}h$. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

Inhibitory Effects of Copper on the Anaerobic Degradation of Propionate (프로피온산의 혐기성 분해시 구리의 저해 효과)

  • Shin, Hang-sik;Lee, Chae-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 1999
  • The effects of copper on the anaerobic degradation of propionate were studied using anaerobic batch reactors. The apparent inhibitory effects of copper on the anaerobic degradation of propionate could be observed from behaviors of intermediates, ultimate methane yield(UMY) and specific methanogenic activity(SMA) There was little inhibition at the concentration of $2.5mg\;Cu^{2+}/L$. Beyond this concentration, the inhibitory effects increased with increasing dose of coppers. The 50% inhibition of UMY and SMA occurred at copper dosage of 33.8 and $24.1mg\;Cu^{2+}/gVSS$, respectively. The inhibitory effect based on the UMY was gradually reduced with the operation time dueprobably to the acclimation of microorganisms and/or binding of the added copper by ligands(and possibly ion exchange sites)contained on the cell membrane and extracellular polymer matrix whereas it based on the SMA might exclude the this phenomena. Therefore, the methodology for interpretation of inhibition data based on the SMA was more accurated than the UMY. There was no inhibitory effect in batch reactors supplemented with sulfate due to an antagonistic action of the sulfate reducing bacteria. Propionate degradation was initially retarded for copper inhibited samples but it gradually degraded afterward. Based on the mass removal considering take into account the propionate to acetate conversion, propionate degradation may appeal more affected than acetate. This result revealed that the hydrogenotrophic methanogens were the most affected by copper.

  • PDF

Effects on Chemical Compositions and Digestibilities of the Bulking Agents as a Moisture Control and fermentation Methods of food Waste (음식찌꺼기의 발효사료화시 수분조절제와 발효방법이 화학적 조성분 및 소화율에 미치는 영향)

  • Bae, Dong-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.100-110
    • /
    • 2000
  • Studies were conducted to know effects of the bulking agents (saw dusts, mushroom waste, wheat bran coconut meal, rice hulls) adding o moisture control, fermentation methods (aerobic and anaerobic) and periods (1 to 20 days) of food waste fermentation for animal feeds on chemical compositions and in vitro DDM (digestibility of dry matter). Experiment designs were focussed basically to obtain extension service data. The NDF (neutral detergent fiber) composition in the oak and pine saw dust were 93.5% and 95.4% (DM basis) in respectively. Thus, the fermented food waste feeds using saw dust (50%) increased NDF(12%), and decreased in vitro DDM(48%) compared to those of raw materials before aerobic fermentation. The oak saw dust showed higher DDM compared to pine. Mushroom wastes which is a residues of mushroom culture mixed originally willow saw dust (80%) and wheat bran (20%) showed quite higher feed value compared to both saw dusts. It was found that an in vitro DDM and NDF composition in fermented feeds appeared highly dependent or the NDF composition in bulking agents. With an increase wheat bran ratio substitute mushroom waste showed linearly decreased NDF, and increased in vitro DDM in the fermented food waste feeds. The fermented feeds added bottling agents composed higher NDF resulted in higher NDF and lower in vitro DDM with prolonged fermentation time. The feeds from anaerobic fermentation appeared lower NDF and higher in vitro DDM compared to those of aerobic fermentation.

  • PDF

The effect of mixture ratios of worm cast and soil on the growth of Orchardgrass seedlings (지렁이 분립(糞粒)과 토양의 혼합비율이 Orchardgrass 유식물체(幼植物體)의 생육에 미치는 영향)

  • Lee, J.S.;Yoo, E.H.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.2
    • /
    • pp.267-274
    • /
    • 1993
  • This experiment was carried out to determine the effect of mixture ratios of worm cast and soil on the growth orchardgrass seedlings, and estimate the adequate mixture ratio of worm cast for plant growth media. Mixture ratios of worm cast and soil were 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100, respectively. The results were summarized as follows; 1. The value of dry weight of shoot(SW), dry weight of root(RW), number of tillers per plant(NT) and biological yield(BY) were the highest in the mixture with 60% of worm cast. Particularly, the dry weight distribution to root in 20%-60% mixture ratios of worm cast were higher than those grown in 80%-100% mixture ratios of worm cast, it may due to the enhancement of root growth by adquate worm cast mix. 2. The orchardgrass seedlings in the 60% mixture ratio of worm cast grown in favourable soil conditions compared to those grown in other mixtrure ratios of worm cast and soil without worm cast. The soil analysis data showed that 60% mixture ratio of worm cast contained pH 6.16, 13.84% of organic matter, 0.84% of total nitrogen, 1,413.9ppm of available phosphorus and 16.7me/100g of cation exchange capacity, respectively. 3. Biological yield(BY) indicated positive significant correlation with the dry weights of shoot(SW) and root(RW). And, the dry weight of shoot(SW) had positive correlation with the number of tiller per plant(NT) and dry weight of tiller(WT).

  • PDF

Solvent Extraction of Light (Pr, Nd) and Medium (Tb, Dy) Rare Earth Elements with PC88A of Rare Earth Chloride Solution from Waste Permanent Magnet (폐 영구자석으로부터 회수한 염화희토류용액에서 PC88A를 이용한 경희토류(Pr, Nd)/중희토류(Tb, Dy) 용매추출)

  • Jeon, Su-Byung;Son, InJoon;Lim, Byung-Chul;Kim, Jeong-Mo;Kim, Yeon-Jin;Ha, Tae-Gyu;Yoon, Ho-Sung;Kim, Chul-Joo;Chung, Kyeong-Woo
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • Solvent extraction behavior of light rare earth elements (Pr, Nd) and medium rare erath elements (Tb, Dy) in the HCl-PC88A-kerosene extraction system was investigated in order to separate high-purity light rare earths (Pr, Nd) and medium rare earths (Tb, Dy) in the mixed rare earth chloride solution. In the batch test step, it was confirmed that the separation efficiency was good when the extractant concentration (PC88A) was 0.5 M, the equilibrium pH after extraction was 0.8 to 1.0 (initial pH 1.3 of the feed), the concentrations of hydrochloric acid in scrubbing solution was set as 0.1 M, the concentrations of hydrochloric acid in stripping solution was set as 2.0 M or more. Based on the experimental data obtained from the batch test, the mixer-settler was composed as follows; 4 stages of extraction, 8 stages of scrubbing, 4 stages of stripping, and 3 stages of pickling organic solution. The Mixer-settler was operated for 180 hours, and the operating conditions were continuously adjusted to obtain the high-purity light/medium rare earths. Finally, the purity of light (Pr, Nd) and medium rare earth elements (Tb, Dy) was reached as 3 N class.

Investigation on Posssiblility of Composting by Properties Analysis of Organic Sludge Composts (각종 유기성오니의 성상분석에 의한 퇴비화가능성의 검토)

  • Han, E.J.;Choi, H.G.;Lee, J.A.;Kim, K.Y.;Lee, C.K.;Park, K.H.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.109-120
    • /
    • 2000
  • In the analysis of the common categories, moisture contents and organic concentrations were not much different according to the types of industry or treatment facilities. When heavy metals contribution of the sludge from domestic and industrial wastewater treatment facilities was analyzed, As, Hg and Cr concentrations were relatively high among 42 standards of the fertilizer law. As concentration war higher in 28 of 42 facilities (67%) than limits of the fertilizer law. Hg concentration was not acceptable in the 21 of 42 facilities (50%). Cr concentration was not acceptable in 9 of 42 facilities (21%). From these results, It is found that As is the most frequently detectable component and contaminant than any other heavy metals in sludges. The data from this experiment was also compared with the guidelines of harmful organics and the rest of heavy metals that are regulated by some of the foreign countries. Be, Se and Mo concentrations were lower than the limits. Among the organics, the average concentration of PCB (10 samples) was 26.2 ppb. The highest concentration was 162.6 ppb in the sludge of the municipal wastewater treatment facilities and the lowest concentration was 2.14 ppb from the skin manufacturing industry. From the leaching analysis of re-manufacturing goods from the sludge, most of them was acceptable on the regulation law but Cr concentration was over the limit.

  • PDF

Estimation of Carbon Sequestration and Its Profit Analysis with Different Application Rates of Biochar during Corn Cultivation Periods (옥수수 재배기간 동안 바이오차 시용 수준에 따른 탄소 격리량 산정 및 이익 분석)

  • Shin, JoungDu;Choi, Yong-Su;Lee, SunIl
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.83-90
    • /
    • 2016
  • Despite the ability of biochar to enhance soil fertility and to mitigate greenhouse gas, its carbon sequestration and profit analysis with arable land application have been a few evaluated. This study was conducted to estimate carbon sequestration and to evaluate profit of greenhouse gas mitigation during corn cultivation periods. For the experiment, the biochar application rates were consisted of pig compost(non application), 2,600(0.2%), 13,000(1%), and 26,000(2%) kg/ha based on pig compost application. For predicting soil carbon sequestration of biochar application, it was appeared to be linear model of Y = 0.5523X - 742.57 ($r^2=0.939^{**}$). Based on this equation, soil carbon sequestration by 0.2, 1 and 2% biochar application was estimated to be 1,235, 3,978, and 14,794 kg/ha, and their mitigations of $CO_2$-eq. emissions were estimated to be 4.5, 14.6, and 54.2 ton/ha, respectively. Their profits were estimated at $14.6 for lowest and $452 for highest. In Korea Climate Exchange, it was estimated that the market price of $CO_2$ in corn cultivation periods with 0.2, 1 and 2% biochar application was $35.6, $115.3 and $428.2 per hectare, respectively. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices.