• Title/Summary/Keyword: Data Reception and Recording

Search Result 5, Processing Time 0.016 seconds

Software Buffering Technique For Real-time Recording of High Speed Satellite Data

  • Shin, Dong-Seok;Choi, Wook-Hyun;Kim, Moon-Gyu;Park, Won-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.147-153
    • /
    • 2002
  • The real-time reception and recording of down-link mission data from a satellite requires the highest reliability because the data lost in receiving process cannot be recovered. The data receiving and recording system has moved from a set of dedicated hardware and software components to commercial-off-the-shelf (COTS) components in order to reduce the system cost as well as to upgrade the system easily for handling other satellite data. The use of COTS hardware and middleware components prevents the system developer from correcting or modifying the internal operations of the COTS components, and hence, instant performance degradation of the COTS components which affects the reliable data acquisition must be covered by a software algorithm. This paper introduces the instant performance problem of a COTS data recording device which leads to the data loss in the real-time data reception and recording process. As a result, the requirement of the modification of the conventional data read/write technique is issued. In order to overcome the data loss problem due to the use of COTS components and the conventional software technique, a new algorithm called a software buffering technique is proposed. The experiments show that the application of the proposed technique results in reliable real-time reception and recording of high speed serial data.

Implementation of Remote Control System using TeleRemote System (TeleRemote를 이용한 원격 제어 시스템 구현)

  • 김상복;한성호;진현준;박노경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12B
    • /
    • pp.1115-1123
    • /
    • 2003
  • In this paper, a remote control system called TeleRemote system which can be applied to existing wireless mobile networks or public telephone networks for remote control is designed and implemented. The proposed design employs program technology based on the theory of signal detect control and enables the EPG(Electronic Program Guide) functions such as recording reservation of bidirectional video signals with TV reception card on PC. It can also control recording reservation using remote control program through telecommunication network The PC-EPG system is implemented in Web programs with Server/Clinet architecture and the server system that provides EPG functionalities is in charge of recording reservations and data communications by means of the scheduler program. Data storing to client PCs is performed through TCP/IP and finished by client programs implemented using Visual C++/MFC programs. As remote control system, the developed system can be used for unmanned security system using the Web camera. Building intranet and making connection to internet, the TeleRemote system is believed to create potential for commercial communication system.

Design and Application of User Preference Information Structure and Program Information Structure (사용자 적응적 방송 수신을 위한 사용자 선호도 정보구조와 프로그램 정보구조의 설계 및 응용)

  • 윤경로;이진수;이희연
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.94-101
    • /
    • 2000
  • User adaptive reception of broadcast programs includes the functionality such as the user adaptive filtering and browsing functionality. The user adaptive filtering means that the user can limit the list of programs to include only his/her favorite programs among hundreds of available programs. The user adaptive browsing means that the user can view a short summary of his/her selection in the way that he/she prefers. When the receiving system include the random access storage device, the automatic recording functionality of users favorite programs can be included. The user adaptive reception requires support from various meta-data such as user preference data and content description data. TV Anytime forum is a standardization effort to enable user adaptive TV reception, which means that the user can watch what s/he wants when s/he want in the way s/he wants. MPEG-7 includes not only the content description for broadcast applications but also other content descriptions such as structure information. This paper addresses the relationship between MPEG-7 and TV Anytime and investigates how MPEG-7 should be designed and be used to satisfy the requirements of the user adaptive reception of broadcast program.

  • PDF

Measurement of Vertical-Directional DTV Signal Level Using a Multi-Copter (멀티콥터를 이용한 수직방향 DTV 신호 레벨 측정)

  • Park, Hyung-Do;Lim, Sol;Kim, Dae Jin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.372-384
    • /
    • 2014
  • DTV field tests have been performed to measure field strength and to check reception ratio on indoor and outdoor sites. They use an antenna of 9m to measure DTV signal in case of outdoor measurement on the road. Modern skyscrapers require the analysis of vertical-directional wave propagation by measuring vertical-directional DTV signal. Even if the field strength is above the reception threshold of $43dB{\mu}V/m$, the reception is impossible in case of strong multi-path or high impulse noise. So, vertical-directional field measurement is essential in environment of tall buildings. In this paper, we developed an octo type multi-copter to measure vertical-directional DTV signal level. A compact and portable DTV signal level meter, an antenna, a microwave transmitter for data transmission, and a recording equipment are equipped in the multi-copter. Three different sites are selected to test the measurement system. Developed measurement system using the multi-copter is very useful in measuring vertical-directional DTV signal, especially in apartments, non-accessible area by vehicles, and forbidden areas.

Research on development of electroencephalography Measurement and Processing system (뇌전도 측정 및 처리 시스템 개발에 관한 연구)

  • Doo-hyun Lee;Yu-jun Oh;Jin-hee Hong;Jun-su chae;Young-gyu Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2024
  • In general, EEG signal analysis has been the subject of several studies due to its ability to provide an objective mode of recording brain stimulation, which is widely used in brain-computer interface research with applications in medical diagnosis and rehabilitation engineering. In this study, we developed EEG reception hardware to measure electroencephalograms and implemented a processing system, classifying it into server and data processing. It was conducted as an intermediate-stage research on the implementation of a brain-computer interface using electroencephalograms, and was implemented in the form of predicting the user's arm movements according to measured electroencephalogram data. Electroencephalogram measurements were performed using input from four electrodes through an analog-to-digital converter. After sending this to the server through a communication process, we designed and implemented a system flow in which the server classifies the electroencephalogram input using a convolutional neural network model and displays the results on the user terminal.