• Title/Summary/Keyword: Data Query

Search Result 1,553, Processing Time 0.03 seconds

Proteome Data Analysis of Hairy Root of Panax ginseng : Use of Expressed Sequence Tag Data of Ginseng for the Protein Identification (인삼 모상근 프로테옴 데이터 분석 : 인삼 EST database와의 통합 분석에 의한 단백질 동정)

  • Kwon, Kyung-Hoon;Kim, Seung-Il;Kim, Kyung-Wook;Kim, Eun-A;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Yang, Deok-Chun;Hur, Cheol-Goo;Yoo, Jong-Shin;Park, Young-Mok
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • For the hairy root of Panax ginseng, we have got mass spectrums from MALDI/TOF/MS analysis and Tandem mass spectrums from ESI/Q-TOF/MS analysis. While mass spectrum provides the molecular weights of peptide fragments digested by protease such as trypsin, tandem mass spectrum produces amino acid sequence of digested peptides. Each amino acid sequences can be a query sequence in BLAST search to identify proteins. For the specimens of animals or plants of which genome sequences were known, we can easily identify expressed proteins from mass spectrums with high accuracy. However, for the other specimens such as ginseng, it is difficult to identify proteins with accuracy since all the protein sequences are not available yet. Here we compared the mass spectrums and the peptide amino acid sequences with ginseng expressed sequence tag (EST) DB. The matched EST sequence was used as a query in BLAST search for protein identification. They could offer the correct protein information by the sequence alignment with EST sequences. 90% of peptide sequences of ESI/Q-TOF/MS are matched with EST sequences. Comparing 68% matches of the same sequences with the nr database of NCBI, we got more matches by 22% from ginseng EST sequence search. In case of peptide mass fingerprinting from MALDI/TOF/MS, only about 19% (9 proteins of 47 spots) among peptide matches from nr DB were correlated with ginseng EST DB. From these results, we suggest that amino acid sequencing using tandem mass spectrum analysis may be necessary for protein identification in ginseng proteome analysis.

Homonym Disambiguation based on Mutual Information and Sense-Tagged Compound Noun Dictionary (상호정보량과 복합명사 의미사전에 기반한 동음이의어 중의성 해소)

  • Heo, Jeong;Seo, Hee-Cheol;Jang, Myung-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1073-1089
    • /
    • 2006
  • The goal of Natural Language Processing(NLP) is to make a computer understand a natural language and to deliver the meanings of natural language to humans. Word sense Disambiguation(WSD is a very important technology to achieve the goal of NLP. In this paper, we describe a technology for automatic homonyms disambiguation using both Mutual Information(MI) and a Sense-Tagged Compound Noun Dictionary. Previous research work using word definitions in dictionary suffered from the problem of data sparseness because of the use of exact word matching. Our work overcomes this problem by using MI which is an association measure between words. To reflect language features, the rate of word-pairs with MI values, sense frequency and site of word definitions are used as weights in our system. We constructed a Sense-Tagged Compound Noun Dictionary for high frequency compound nouns and used it to resolve homonym sense disambiguation. Experimental data for testing and evaluating our system is constructed from QA(Question Answering) test data which consisted of about 200 query sentences and answer paragraphs. We performed 4 types of experiments. In case of being used only MI, the result of experiment showed a precision of 65.06%. When we used the weighted values, we achieved a precision of 85.35% and when we used the Sense-Tagged Compound Noun Dictionary, we achieved a precision of 88.82%, respectively.

Synthetic Trajectory Generation Tool for Indoor Moving Objects (실내공간 이동객체 궤적 생성기)

  • Ryoo, Hyung Gyu;Kim, Soo Jin;Li, Ki Joune
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • For the performance experiments of databases systems with moving object databases, we need moving object trajectory data sets. For example, benchmark data sets of moving object trajectories are required for experiments on query processing of moving object databases. For those reasons, several tools have been developed for generating moving objects in Euclidean spaces or road network spaces. Indoor space differs from outdoor spaces in many aspects and moving object generator for indoor space should reflect these differences. Even some tools were developed to produce virtual moving object trajectories in indoor space, the movements generated by them are not realistic. In this paper, we present a moving object generation tool for indoor space. First, this tool generates trajectories for pedestrians in an indoor space. And it provides a parametric generation of trajectories considering not only speed, number of pedestrians, minimum distance between pedestrians but also type of spaces, time constraints, and type of pedestrians. We try to reflect the patterns of pedestrians in indoor space as realistic as possible. For the reason of interoperability, several geospatial standards are used in the development of the tool.

A Study on the Intellectual Structure of Metadata Research by Using Co-word Analysis (동시출현단어 분석에 기반한 메타데이터 분야의 지적구조에 관한 연구)

  • Choi, Ye-Jin;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.63-83
    • /
    • 2016
  • As the usage of information resources produced in various media and forms has been increased, the importance of metadata as a tool of information organization to describe the information resources becomes increasingly crucial. The purposes of this study are to analyze and to demonstrate the intellectual structure in the field of metadata through co-word analysis. The data set was collected from the journals which were registered in the Core collection of Web of Science citation database during the period from January 1, 1998 to July 8, 2016. Among them, the bibliographic data from 727 journals was collected using Topic category search with the query word 'metadata'. From 727 journal articles, 410 journals with author keywords were selected and after data preprocessing, 1,137 author keywords were extracted. Finally, a total of 37 final keywords which had more than 6 frequency were selected for analysis. In order to demonstrate the intellectual structure of metadata field, network analysis was conducted. As a result, 2 domains and 9 clusters were derived, and intellectual relations among keywords from metadata field were visualized, and proposed keywords with high global centrality and local centrality. Six clusters from cluster analysis were shown in the map of multidimensional scaling, and the knowledge structure was proposed based on the correlations among each keywords. The results of this study are expected to help to understand the intellectual structure of metadata field through visualization and to guide directions in new approaches of metadata related studies.

Vector Approximation Bitmap Indexing Method for High Dimensional Multimedia Database (고차원 멀티미디어 데이터 검색을 위한 벡터 근사 비트맵 색인 방법)

  • Park Joo-Hyoun;Son Dea-On;Nang Jong-Ho;Joo Bok-Gyu
    • The KIPS Transactions:PartD
    • /
    • v.13D no.4 s.107
    • /
    • pp.455-462
    • /
    • 2006
  • Recently, the filtering approach using vector approximation such as VA-file[1] or LPC-file[2] have been proposed to support similarity search in high dimensional data space. This approach filters out many irrelevant vectors by calculating the approximate distance from a query vector using the compact approximations of vectors in database. Accordingly, the total elapsed time for similarity search is reduced because the disk I/O time is eliminated by reading the compact approximations instead of original vectors. However, the search time of the VA-file or LPC-file is not much lessened compared to the brute-force search because it requires a lot of computations for calculating the approximate distance. This paper proposes a new bitmap index structure in order to minimize the calculating time. To improve the calculating speed, a specific value of an object is saved in a bit pattern that shows a spatial position of the feature vector on a data space, and the calculation for a distance between objects is performed by the XOR bit calculation that is much faster than the real vector calculation. According to the experiment, the method that this paper suggests has shortened the total searching time to the extent of about one fourth of the sequential searching time, and to the utmost two times of the existing methods by shortening the great deal of calculating time, although this method has a longer data reading time compared to the existing vector approximation based approach. Consequently, it can be confirmed that we can improve even more the searching performance by shortening the calculating time for filtering of the existing vector approximation methods when the database speed is fast enough.

A Proposal of a Mobile Augmented Reality Service Model based on Street Data, and its Implementation (도로데이터 기반의 모바일 증강현실 서비스 모델 제안 및 시스템 구현)

  • Lee, Jeong Hwan;Lee, Jun;Kwon, Yong Jin
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.9-19
    • /
    • 2015
  • The popularity of smart devices and Location Based Services (LBSes) is increasing in part due to users demand for personalized information associated with their location. These services provide intuitive and realistic information by adopting Augmented Reality (AR) technology. This technology utilizes various sensors embedded in the mobile devices. However, these services have inherent problems due to the devices small screen size and the complexity of the real world environment; overlapping content on a small screen and placing icons without considering the user's possible movement. In order to solve these problems, this paper proposes a Mobile Augmented Reality Model with the application of Street Data. The model consists of two layers: "Real Space" and "Information Space". In the model, a user creates a query by scanning the nearby street with a camera in real space and searches accessible content along the street through the use of the information space. Furthermore, the results are placed on both sides of the street to solve the issue of Overlapping. Also, the proposed model is implemented for region "Aenigol", and the efficiency and usefulness of the model are verified.

WPS-based Satellite Image Processing onWeb Framework and Cloud Computing Environment (클라우드 컴퓨팅과 웹 프레임워크 환경에서 WPS 기반 위성영상 정보처리)

  • Yoon, Gooseon;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.561-570
    • /
    • 2015
  • Till now, applications of many kinds of satellite images have been accentuated in the datacentric scientific studies, researches regarding system development and concerned technologies for them are on the un-matured stage. Especially, satellite image processing requires large volume data handling and specific analysis functionalities, so that practical necessity of base study for system development is emphasized on. In the view of information system, various edged trends such as web standards, cloud computing, or web framework are utilized owing to their application benefits proven and business needs. Considered these aspects, a testing implementation was carried out using OpenStack cloud computing environment and e-government framework. As for the processing functions, WPS in GeoServer, as one of OGC web standards, was applied to perform interoperable data processing scheme between two or more remote servers. Working with the server implemented, client-side was also developed using several open sources such as HTML 5, jQuery, and OpenLayers. If it is that completed further experiments onsite applications with actual multi-data sets and extension of on-demand functionalities with the result of this study, it will be referred as an example case model for complicated and complex system design and implementation which needs cloud computing, geo-spatial web standards and web framework.

A 3-Layered Information Integration System based on MDRs End Ontology (MDR과 온톨로지를 결합한 3계층 정보 통합 시스템)

  • Baik, Doo-Kwon;Choi, Yo-Han;Park, Sung-Kong;Lee, Jeong-Oog;Jeong, Dong-Won
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.247-260
    • /
    • 2003
  • To share and standardize information, especially in the database environments, MDR (Metadata Registry) can be used to integrate various heterogeneous databases within a particular domain. But due to the discrepancies of data element representation between organizations, global information integration is not so easy. And users who are searching integrated information on the Web have limitation to obtain schema information for the underlying source databases. To solve those problems, in this paper, we present a 3-layered Information Integration System (LI2S) based on MDRs and Ontology. The purpose of proposed architecture is to define information integration model, which combine both of the nature of MDRs standard specification and functionality of ontology for the concept and relation. Adopting agent technology to the proposed model plays a key role to support the hierarchical and independent information integration architecture. Ontology is used as for a role of semantic network from which it extracts concept from the user query and the establishment of relationship between MDRs for the data element. (MDR and Knowledge Base are used as for the solution of discrepancies of data element representation between MDRs. Based on this architectural concept, LI2S was designed and implemented.

A Collaborative Video Annotation and Browsing System using Linked Data (링크드 데이터를 이용한 협업적 비디오 어노테이션 및 브라우징 시스템)

  • Lee, Yeon-Ho;Oh, Kyeong-Jin;Sean, Vi-Sal;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.203-219
    • /
    • 2011
  • Previously common users just want to watch the video contents without any specific requirements or purposes. However, in today's life while watching video user attempts to know and discover more about things that appear on the video. Therefore, the requirements for finding multimedia or browsing information of objects that users want, are spreading with the increasing use of multimedia such as videos which are not only available on the internet-capable devices such as computers but also on smart TV and smart phone. In order to meet the users. requirements, labor-intensive annotation of objects in video contents is inevitable. For this reason, many researchers have actively studied about methods of annotating the object that appear on the video. In keyword-based annotation related information of the object that appeared on the video content is immediately added and annotation data including all related information about the object must be individually managed. Users will have to directly input all related information to the object. Consequently, when a user browses for information that related to the object, user can only find and get limited resources that solely exists in annotated data. Also, in order to place annotation for objects user's huge workload is required. To cope with reducing user's workload and to minimize the work involved in annotation, in existing object-based annotation automatic annotation is being attempted using computer vision techniques like object detection, recognition and tracking. By using such computer vision techniques a wide variety of objects that appears on the video content must be all detected and recognized. But until now it is still a problem facing some difficulties which have to deal with automated annotation. To overcome these difficulties, we propose a system which consists of two modules. The first module is the annotation module that enables many annotators to collaboratively annotate the objects in the video content in order to access the semantic data using Linked Data. Annotation data managed by annotation server is represented using ontology so that the information can easily be shared and extended. Since annotation data does not include all the relevant information of the object, existing objects in Linked Data and objects that appear in the video content simply connect with each other to get all the related information of the object. In other words, annotation data which contains only URI and metadata like position, time and size are stored on the annotation sever. So when user needs other related information about the object, all of that information is retrieved from Linked Data through its relevant URI. The second module enables viewers to browse interesting information about the object using annotation data which is collaboratively generated by many users while watching video. With this system, through simple user interaction the query is automatically generated and all the related information is retrieved from Linked Data and finally all the additional information of the object is offered to the user. With this study, in the future of Semantic Web environment our proposed system is expected to establish a better video content service environment by offering users relevant information about the objects that appear on the screen of any internet-capable devices such as PC, smart TV or smart phone.

Development of Local Animal BLAST Search System Using Bioinformatics Tools (생물정보시스템을 이용한 Local Animal BLAST Search System 구축)

  • Kim, Byeong-Woo;Lee, Geun-Woo;Kim, Hyo-Seon;No, Seung-Hui;Lee, Yun-Ho;Kim, Si-Dong;Jeon, Jin-Tae;Lee, Ji-Ung;Jo, Yong-Min;Jeong, Il-Jeong;Lee, Jeong-Gyu
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2006
  • The Basic Local Alignment Search Tool (BLAST) is one of the most established software in bioinformatics research and it compares a query sequence against the libraries of known sequences in order to investigate sequence similarity. Expressed Sequence Tags (ESTs) are single-pass sequence reads from mRNA (or cDNA) and represent the expression for a given cDNA library and the snapshot of genes expressed in a given tissue and/or at a given developmental stage. Therefore, ESTs can be very valuable information for functional genomics and bioinformatics researches. Although major bio database (DB) websites including NCBI are providing BLAST services and EST data, local DB and search system is demanding for better performance and security issue. Here we present animal EST DBs and local BLAST search system. The animal ESTs DB in NCBI Genbank were divided by animal species using the Perl script we developed. and we also built the new extended DB search systems fur the new data (Local Animal BLAST Search System: http://bioinfo.kohost.net), which was constructed on the high-capacity PC Cluster system fur the best performance. The new local DB contains 650,046 sequences for Bos taurus(cattle), 368,120 sequences for Sus scrofa (pig), 693,005 sequences for Gallus gallus (fowl), respectively.

  • PDF