• Title/Summary/Keyword: Data Obfuscation and Encryption

Search Result 5, Processing Time 0.03 seconds

Analysis of anti-forensic trends and research on countermeasuresucation (안티 포렌식 동향 분석 및 대응 방안 연구)

  • Han Hyundong;Cho Young Jun;Cho Jae Yeon;Kim Se On;Han Wan Seop;Choi Yong Jun;Lee Jeong Hun;Kim Min Su
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.97-107
    • /
    • 2023
  • With the popularization of digital devices in the era of the 4th industrial revolution and the increase in cyber crimes targeting them, the importance of securing digital data evidence is emerging. However, the difficulty in securing digital data evidence is due to the use of anti-forensic techniques that increase analysis time or make it impossible, such as manipulation, deletion, and obfuscation of digital data. Such anti-forensic is defined as a series of actions to damage and block evidence in terms of digital forensics, and is classified into data destruction, data encryption, data concealment, and data tampering as anti-forensic techniques. Therefore, in this study, anti-forensic techniques are categorized into data concealment and deletion (obfuscation and encryption), investigate and analyze recent research trends, and suggest future anti-forensic research directions.

A Code Concealment Method using Java Reflection and Dynamic Loading in Android (안드로이드 환경에서 자바 리플렉션과 동적 로딩을 이용한 코드 은닉법)

  • Kim, Jiyun;Go, Namhyeon;Park, Yongsu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.17-30
    • /
    • 2015
  • Unlike existing widely used bytecode-centric Android application code obfuscation methodology, our scheme in this paper makes encrypted file i.e. DEX file self-extracted arbitrary Android application. And then suggests a method regarding making the loader app to execute encrypted file's code after saving the file in arbitrary folder. Encrypted DEX file in the loader app includes original code and some of Manifest information to conceal event treatment information. Loader app's Manifest has original app's Manifest information except included information at encrypted DEX. Using our scheme, an attacker can make malicious code including obfuscated code to avoid anti-virus software at first. Secondly, Software developer can make an application with hidden main algorithm to protect copyright using suggestion technology. We implement prototype in Android 4.4.2(Kitkat) and check obfuscation capacity of malicious code at VirusTotal to show effectiveness.

Lightweight Validation Mechanism for IoT Sensing Data Based on Obfuscation and Variance Analysis (난독화와 변화량 분석을 통한 IoT 센싱 데이터의 경량 유효성 검증 기법)

  • Yun, Junhyeok;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.9
    • /
    • pp.217-224
    • /
    • 2019
  • Recently, sensor networks are built and used on many kinds of fields such as home, traffic, medical treatment and power grid. Sensing data manipulation on these fields could be a serious threat on property and safety. Thus, a proper way to block sensing data manipulation is necessary. In this paper, we propose IoT(Internet of Things) sensing data validation mechanism based on data obfuscation and variance analysis to remove manipulated sensing data effectively. IoT sensor device modulates sensing data with obfuscation function and sends it to a user. The user demodulates received data to use it. Fake data which are not modulated with proper obfuscation function show different variance aspect with valid data. Our proposed mechanism thus can detect fake data by analyzing data variance. Finally, we measured data validation time for performance analysis. As a result, block rate for false data was improved by up to 1.45 times compared with the existing technique and false alarm rate was 0.1~2.0%. In addition, the validation time on the low-power, low-performance IoT sensor device was measured. Compared to the RSA encryption method, which increased to 2.5969 seconds according to the increase of the data amount, the proposed method showed high validation efficiency as 0.0003 seconds.

A Proposal of Privacy Protection Method for Location Information to Utilize 5G-Based High-Precision Positioning Big Data (5G 기반 고정밀 측위 빅데이터 활용을 위한 위치정보 프라이버시 보호 기법 제안)

  • Lee, Donghyeok;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.679-691
    • /
    • 2020
  • In the future, 5G technology will become the core infrastructure driving the 4th industrial era. For intelligent super-convergence service, it will be necessary to collect various personal information such as location data. If a person's high-precision location information is exposed by a malicious person, it can be a serious privacy risk. In the past, various approaches have been researched through encryption and obfuscation to protect location information privacy. In this paper, we proposed a new technique that enables statistical query and data analysis without exposing location information. The proposed method does not allow the original to be re-identified through polynomial-based transform processing. In addition, since the quality of the original data is not compromised, the usability of positioning big data can be maximized.

Development of Internet of Things Sensor-based Information System Robust to Security Attack (보안 공격에 강인한 사물인터넷 센서 기반 정보 시스템 개발)

  • Yun, Junhyeok;Kim, Mihui
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.95-107
    • /
    • 2022
  • With the rapid development of Internet of Things sensor devices and big data processing techniques, Internet of Things sensor-based information systems have been applied in various industries. Depending on the industry in which the information systems are applied, the accuracy of the information derived can affect the industry's efficiency and safety. Therefore, security techniques that protect sensing data from security attacks and enable information systems to derive accurate information are essential. In this paper, we examine security threats targeting each processing step of an Internet of Things sensor-based information system and propose security mechanisms for each security threat. Furthermore, we present an Internet of Things sensor-based information system structure that is robust to security attacks by integrating the proposed security mechanisms. In the proposed system, by applying lightweight security techniques such as a lightweight encryption algorithm and obfuscation-based data validation, security can be secured with minimal processing delay even in low-power and low-performance IoT sensor devices. Finally, we demonstrate the feasibility of the proposed system by implementing and performance evaluating each security mechanism.