• Title/Summary/Keyword: Data Interpolation

Search Result 1,025, Processing Time 0.03 seconds

Utilization Evaluation of Numerical forest Soil Map to Predict the Weather in Upland Crops (밭작물 농업기상을 위한 수치형 산림입지토양도 활용성 평가)

  • Kang, Dayoung;Hwang, Yeongeun;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.34-45
    • /
    • 2021
  • Weather is one of the important factors in the agricultural industry as it affects the price, production, and quality of crops. Upland crops are directly exposed to the natural environment because they are mainly grown in mountainous areas. Therefore, it is necessary to provide accurate weather for upland crops. This study examined the effectiveness of 12 forest soil factors to interpolate the weather in mountainous areas. The daily temperature and precipitation were collected by the Korea Meteorological Administration between January 2009 and December 2018. The Generalized Additive Model (GAM), Kriging, and Random Forest (RF) were considered to interpolate. For evaluating the interpolation performance, automatic weather stations were used as training data and automated synoptic observing systems were used as test data for cross-validation. Unfortunately, the forest soil factors were not significant to interpolate the weather in the mountainous areas. GAM with only geography aspects showed that it can interpolate well in terms of root mean squared error and mean absolute error. The significance of the factors was tested at the 5% significance level in GAM, and the climate zone code (CLZN_CD) and soil water code B (SIBFLR_LAR) were identified as relatively important factors. It has shown that CLZN_CD could help to interpolate the daily average and minimum daily temperature for upland crops.

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

Construction of Ionospheric TEC Retrieval System Using Korean GNSS Network (국내 GNSS 관측 자료를 이용한 전리권 총전자밀도 산출 시스템 구축)

  • Lee, Jeong-Deok;Shin, Daeyun;Kim, Dohyeong;Oh, Seung Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2012
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) has launched to implement the application development to get prepared for the space weather operation since 2010. As a action of KMA's space weather work, NMSC constructed Global Navigation Satellite System(GNSS) application system for meteorology and space weather. We will introduce NMSC's space weather application system which derives regional TEC(Total Electron Content) in near real time using nation-wide GNSS network data. First, We constructed system for collecting GNSS data, which is currently collecting about 80 stations operated by agencies like NGII(National Geographic Information Institute), Central Office of DGPS(Differential GPS), and KASI(Korea Astronomy and Space Science) including KMA's own data of 2 stations. In order to retreive regional TEC over Korean peninsular, we build up the automatic processes running every 1-hour. In these processes, firstly, GNSS data of every stations with 24 hours time window are processed to derive DCBs(Differential Code Biases) of each GNSS station and TEC values on every ionosphere piercing point(IPP). Then we made gridded regional TEC map with resolution of 0.25 degree from 31N, 121E to 41N, 135E by combination of all station results within 30 minutes window with assumption that TEC of a given point during a given 30 minutes window would have a constant value. The grid points without TEC value are interpolated using Barnes objective analysis. We presentour regional TEC maps, which can describe better on the status of ionosphere over Korean peninsular compared to IGS TEC maps.

Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique (조건부 합성방법을 이용한 위성관측 토양수분과 지상관측 토양수분의 합성)

  • Lee, Jaehyeon;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.263-273
    • /
    • 2016
  • This study applied conditional merging (CM) spatial interpolation technique to obtain the satellite and in-situ composite soil moisture data. For the analysis, 24 gages of hourly in-situ data sets from the Rural Development Administration (RDA) of Korea and the satellite soil moisture data retrieved from Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) were used. In order to verify the performance of the CM method, leave-one-out cross validation was used. The cross validation result was spatially interpolated to figure out spatial correlation of the CM method. The results derived from this study are as follow: (1) The CM method produced better soil moisture map over Korean Peninsula than AMSR-E did for the over 100 days out of total 113 days considered for the analysis. (2) The method of CM showed high correlation with gage density and better performance on the western side of Korean peninsula due to high spatial gauge density. (3) The performance of CM is not affected by the non-rainy season unlike to AMSR-E data is. Overall, the result of this study indicates that the CM method can be applied for predicting soil moisture at ungaged locations.

Use of Space-time Autocorrelation Information in Time-series Temperature Mapping (시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Climatic variables such as temperature and precipitation tend to vary both in space and in time simultaneously. Thus, it is necessary to include space-time autocorrelation into conventional spatial interpolation methods for reliable time-series mapping. This paper introduces and applies space-time variogram modeling and space-time kriging to generate time-series temperature maps using hourly Automatic Weather System(AWS) temperature observation data for a one-month period. First, temperature observation data are decomposed into deterministic trend and stochastic residual components. For trend component modeling, elevation data which have reasonable correlation with temperature are used as secondary information to generate trend component with topographic effects. Then, space-time variograms of residual components are estimated and modelled by using a product-sum space-time variogram model to account for not only autocorrelation both in space and in time, but also their interactions. From a case study, space-time kriging outperforms both conventional space only ordinary kriging and regression-kriging, which indicates the importance of using space-time autocorrelation information as well as elevation data. It is expected that space-time kriging would be a useful tool when a space-poor but time-rich dataset is analyzed.

  • PDF

PRISM-KNU Development and Monthly Precipitation Mapping in South Korea (PRISM-KNU의 개발과 남한 월강수량 분포도 작성)

  • PARK, Jong-Chul;KIM, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.27-46
    • /
    • 2016
  • In this study, the parameter-elevation regressions on independent slopes model-Kongju National University(PRISM-KNU) system was developed to interpolate monthly precipitation data. One of the features of PRISM-KNU is that it can adjust the allowable range of slope according to the elevation range in the equation representing a linear relationship between the precipitation and elevation. The parameter value of the model was determined by using the optimization technique, and the result was applied to produce monthly precipitation data with a spatial resolution of $1{\times}1km$ from 2000 to 2014 in South Korea. In the result, the Kling-Gupta Efficiency for model evaluation was over 0.7 in 86% of the total cases simulated. In addition, a dramatic change in the spatial pattern of precipitation data was observed in the output of the Modified Korean PRISM, but such a phenomenon did not occur in the output of the PRISM-KNU. This study confirmed the appropriateness of the PRISM-KNU, and the result showed that the spatial consistency of the data produced by the model improved compared with that produced by the Modified Korean PRISM. It is expected that the PRISM-KNU and its output will be utilized in various studies in the future.

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

Calculation of Optical Flow Vector Based on Weather Radar Images Using a Image Processing Technique (영상처리기법을 활용한 기상레이더 영상기반 광학흐름 벡터 산출에 관한 연구)

  • Mo, Sunjin;Gu, Ji-Young;Ryu, Geun-Hyeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.67-69
    • /
    • 2021
  • Weather radar images can be used in a variety of ways because of their high visibility in terms of visuals. In other words it has the advantage of being able to grasp the flow of weather phenomena using not only the raw data of the weather radar, but also the change characteristics between consecutive images. In particular image processing techniques are gradually expanding in the field of meteorological research, and in the case of image data having high resolution such as weather radar images it is expected to produce useful information through a new approach called image processing techniques. In this study the weather phenomena flow was calculated as a vector from the change of the weather radar image according to time interval with the optical flow method, one of the image processing techniques. The characteristics of the weather phenomena to be analyzed were derived through vector analysis resolution suitable for the scale of weather, vector interpolation in regions where no radar echo exists, and the removal of relative flow vectors to distinguish the flow of specific weather and the entire atmosphere. Through this study, it is expected that not only the use of raw data of weather radar, but also the widening of the application area of weather radar, such as the use of unique characteristics of image data, and the active use of image processing techniques in the field of meteorology in the future.

  • PDF

Stereo-To-Multiview Conversion System Using FPGA and GPU Device (FPGA와 GPU를 이용한 스테레오/다시점 변환 시스템)

  • Shin, Hong-Chang;Lee, Jinwhan;Lee, Gwangsoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.616-626
    • /
    • 2014
  • In this paper, we introduce a real-time stereo-to-multiview conversion system using FPGA and GPU. The system is based on two different devices so that it consists of two major blocks. The first block is a disparity estimation block that is implemented on FPGA. In this block, each disparity map of stereoscopic video is estimated by DP(dynamic programming)-based stereo matching. And then the estimated disparity maps are refined by post-processing. The refined disparity map is transferred to the GPU device through USB 3.0 and PCI-express interfaces. Stereoscopic video is also transferred to the GPU device. These data are used to render arbitrary number of virtual views in next block. In the second block, disparity-based view interpolation is performed to generate virtual multi-view video. As a final step, all generated views have to be re-arranged into a single image at full resolution for presenting on the target autostereoscopic 3D display. All these steps of the second block are performed in parallel on the GPU device.