DOI QR코드

DOI QR Code

Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique

조건부 합성방법을 이용한 위성관측 토양수분과 지상관측 토양수분의 합성

  • Lee, Jaehyeon (Department of Civil Engineering, Hongik University) ;
  • Choi, Minha (Graduate School of Water Resources, Sungkyunkwan University) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University)
  • 이재현 (홍익대학교 토목공학과) ;
  • 최민하 (성균관대학교 수자원대학원 수자원학과) ;
  • 김동균 (홍익대학교 토목공학과)
  • Received : 2016.01.08
  • Accepted : 2016.02.11
  • Published : 2016.03.31

Abstract

This study applied conditional merging (CM) spatial interpolation technique to obtain the satellite and in-situ composite soil moisture data. For the analysis, 24 gages of hourly in-situ data sets from the Rural Development Administration (RDA) of Korea and the satellite soil moisture data retrieved from Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) were used. In order to verify the performance of the CM method, leave-one-out cross validation was used. The cross validation result was spatially interpolated to figure out spatial correlation of the CM method. The results derived from this study are as follow: (1) The CM method produced better soil moisture map over Korean Peninsula than AMSR-E did for the over 100 days out of total 113 days considered for the analysis. (2) The method of CM showed high correlation with gage density and better performance on the western side of Korean peninsula due to high spatial gauge density. (3) The performance of CM is not affected by the non-rainy season unlike to AMSR-E data is. Overall, the result of this study indicates that the CM method can be applied for predicting soil moisture at ungaged locations.

기존에 레이더 강우자료의 합성에만 국한되었던 조건부 합성방법을 지상관측 토양수분과 위성관측 토양수분 자료에 적용하였다. 연구에 사용한 토양수분 자료는 농촌진흥청에서 제공하는 24개 관측소의 한시간 단위의 지상관측토양수분자료와 AQUA 위성의 Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) 센서에서 관측된 토양수분 자료를 사용하였다. 교차검증방법(leave one out cross validation)을 사용하여 조건부 합성방법의 예측성능을 평가 하였고, 관측소별 교차검증 방법의 결과를 공간분포 시켜서 지역적인 특성을 분석하였다. 이 연구에서 도출된 결과는 다음과 같다. (1) 총 113일의 분석 기간 중 100일 이상의 기간에 대하여 조건부합성방법을 적용하였을 경우 AMSR-E 자료에 비해 지상관측자료와의 편차가 감소하는 것으로 나타났다. (2) 조건부 합성 방법의 예측 성능은 관측소의 밀도와 밀접한 관련을 나타내었으며, 관측소가 많이 밀집되어있는 한반도의 서쪽 지역에서 예측성능이 우세하게 나타났다. (3) 강우가 발생하지 않는 기간에 대한 AMSR-E의 낮은 정확도와 달리 조건부 합성방법은 무강우 기간에 대해서도 높은 예측성능을 나타내었다. 본 연구의 결과는 미계측 지역에 대한 토양수분을 추정하는 조건부 합성방법의 적용 가능성을 제시한다.

Keywords

References

  1. Albergel, C., de Rosnay, P., Gruhier, C., Munoz-Sabater, J., Hasenauer, S., Isaksen, L., Wagner, W. et al (2012). "Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations." Remote Sensing of Environment, Vol. 118, pp. 215-226. https://doi.org/10.1016/j.rse.2011.11.017
  2. Baik, J., Park, J., Ryu, D., and Choi, M. (2016). "Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite- and ground based data.", Hydrological Processes, DOI: 10.1002/hyp.10786.
  3. Bardossy, A., and Lehmann, W. (1998). "Spatial Distribution of Soil Moisture in a Small Catchment. Part 1: Geostatistical Analysis." Journal of Hydrology, Vol. 206, No. 1, pp. 1-15. https://doi.org/10.1016/S0022-1694(97)00152-2
  4. Berndt, C., Rabiei, E., and Haberlandt, U. (2014). "Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios." Journal of Hydrology, Vol. 508, pp. 88-101. https://doi.org/10.1016/j.jhydrol.2013.10.028
  5. Bindlish, R., Crow, W.T., and Jackson, T.J. (2009). "Role of passive microwave remote sensing in improving flood forecasts." Geoscience and Remote Sensing Letters, IEEE, Vol. 6, No. 1, pp. 112-116. https://doi.org/10.1109/LGRS.2008.2002754
  6. Bolten, J. D., Crow, W. T., Zhan, X., Jackson, T. J., and Reynolds, C. A. (2010). "Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring." Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, Vol. 3, No. 1, pp. 57-66. https://doi.org/10.1109/JSTARS.2009.2037163
  7. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., and Bittelli, M. (2011). "Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe." Remote Sensing of Environment, Vol. 115, No. 12, pp. 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  8. Cho, E., and Choi, M. (2014). "Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula." Journal of Hydrology, Vol. 516, pp. 317-329. https://doi.org/10.1016/j.jhydrol.2013.12.053
  9. Cho, E., Choi, M., and Wagner, W. (2015). "An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia." Remote Sensing of Environment, Vol. 160, No. 166-179. https://doi.org/10.1016/j.rse.2015.01.013
  10. Choi, J.G. (2007). Geostatistics. Sigmapress.
  11. Choi, M., and Hur, Y. (2012). "A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products." Remote Sensing of Environment, Vol. 124, pp. 259-269. https://doi.org/10.1016/j.rse.2012.05.009
  12. Choi, M., and Jacobs, J.M. (2007). Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints. Advances in Water Resources, Vol. 30, No. 4, pp. 883-896. https://doi.org/10.1016/j.advwatres.2006.07.007
  13. Choi, M., and Jacobs, J.M. (2008). "Temporal variability corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) surface soil moisture: case study in Little River region, Georgia, US." Sensors, Vol. 8, No. 4, pp. 2617-2627. https://doi.org/10.3390/s8042617
  14. Crow, W.T., Miralles, D.G., and Cosh, M.H. (2010). "A quasi-global evaluation system for satellite-based surface soil moisture retrievals." Geoscience and Remote Sensing, IEEE Transactions on, Vol. 48, No. 6, pp. 2516-2527. https://doi.org/10.1109/TGRS.2010.2040481
  15. Dorigo, W.A., Scipal, K., Parinussa, R.M., Liu, Y.Y., Wagner, W., De Jeu, R.A.M., and Naeimi, V. (2010). "Error characterisation of global active and passive microwave soil moisture datasets." Hydrology and Earth System Sciences, Vol. 14, No. 12, pp. 2605-2616. https://doi.org/10.5194/hess-14-2605-2010
  16. Draper, C. S., Walker, J. P., Steinle, P. J., de Jeu, R. A., and Holmes, T. R. (2009). "An evaluation of AMSR-E derived soil moisture over Australia." Remote Sensing of Environment, Vo. 113, No. 4, pp. 703-710. https://doi.org/10.1016/j.rse.2008.11.011
  17. Ehret U. (2002). Rainfall and flood nowcasting in small catchments using weather radar. PhD Thesis, University of Stuttgart.
  18. Goudenhoofdt, E., and Delobbe, L. (2009). "Evaluation of radargauge merging methods for quantitative precipitation estimates." Hydrology and Earth System Sciences, Vol. 13, No. 2, pp. 195-203. https://doi.org/10.5194/hess-13-195-2009
  19. Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., and Du, J. et al. (2010). "Validation of advanced microwave scanning radiometer soil moisture products." Geoscience and Remote Sensing, IEEE Transactions on, Vol. 48, No. 12, pp. 4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
  20. Kim, B. J., Kripalani, R. H., Oh, J. H., and Moon, S. E. (2002). "Summer monsoon rainfall patterns over South Korea and associated circulation features." Theoretical and applied climatology, Vol. 72, No. 1-2, pp. 65-74. https://doi.org/10.1007/s007040200013
  21. Kim, G. S., and Kim, J. P. (2011). "Correlation Analysis Between Soil Moisture Retrieved from Satellite Images and Ground Network Measurements." The Korea Association of Geographic Information Studies, Vol. 14, No. 2, pp. 69-81. https://doi.org/10.11108/kagis.2011.14.2.069
  22. Kim, H., Seonwoo, W., Kim, S., and Choi, M. (2016). Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea, Korea Water Resources Association. (in Press)
  23. Kim, S., Liu, Y.Y., Johnson, F.M., Parinussa, R.M., and Sharma, A. (2015). "A global comparison of alternate AMSR2 soil moisture products: Why do they differ?" Remote Sensing of Environment, Vol. 161, pp. 43-62. https://doi.org/10.1016/j.rse.2015.02.002
  24. Koike, T., Nakamura, Y., Kaihotsu, I., Davva, G., Matsuura, N., Tamagawa, K., et al. (2004). "Development of an advanced microwave scanning radiometer (AMSR-E) algorithm for soil moisture and vegetation water content." Annual Journal of Hydraulic Engineering, JSCE, Vol. 48, No. 2, pp. 6.
  25. Loew, A., Holmes, T., and de Jeu, R. (2009). "The European heat wave 2003: Early indicators from multisensoral microwave remote sensing?" Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 114, No. D5.
  26. Miralles, D.G., Crow, W.T., and Cosh, M.H. (2010). "Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations." Journal of Hydrometeorology, Vol. 11, No. 6, pp. 1423-1429. https://doi.org/10.1175/2010JHM1285.1
  27. Njoku, E., Jackson, T., Lakshmi, V., Chan, T., and Nghiem, S.V. (2003), "Soil moisture retrieval from AMSR-E", IEEE Trans. Geosci. Remote Sens., Vol. 41, pp. 215-229. https://doi.org/10.1109/TGRS.2002.808243
  28. Owe, M., De Jeu, R. A.M., and Holmes, T.R.H. (2008). "Multisensor historical climatology of satellite derived global land surface moisture." Journal of Geophysical Research, Vol. 113(F1 F01002).
  29. Paloscia, S., Macelloni, G., and Santi, E. (2006). "Soil moisture estimates from AMSR-E brightness temperatures by using a dual-frequency algorithm." Geoscience and Remote Sensing, IEEE Transactions on, 44(11), 3135-3144. https://doi.org/10.1109/TGRS.2006.881714
  30. Pandey, V., and Pandey, P.K. (2010). "Spatial and temporal variability of soil moisture." International Journal of Geosciences, Vol. 1, No. 2, pp. 87. https://doi.org/10.4236/ijg.2010.12012
  31. Pegram, G.G.S. (2002). Spatial interpolation and mapping of rainfall: 3. Optimal integration of rain gauge, radar & satellitederived data in the production of daily rainfall maps. Progress report to the Water Research Commission.
  32. Rudiger, C., Calvet, J.C., Gruhier, C., Holmes, T.R., De Jeu, R. A., and Wagner, W. (2009). "An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France." Journal of Hydrometeorology, Vol. 10, No. 2, pp. 431-447. https://doi.org/10.1175/2008JHM997.1
  33. Sinclair, S., and Pegram, G. (2005). "Combining radar and rain gauge rainfall estimates using conditional merging." Atmospheric Science Letters, Vol. 6, No. 1, pp. 19-22. https://doi.org/10.1002/asl.85
  34. WMO (2010). Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). World Meteorological Organization. GCOS-138.
  35. Zhang, A., and Jia, G. (2013). "Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data." Remote Sensing of Environment, Vol. 134, pp. 12-23. https://doi.org/10.1016/j.rse.2013.02.023