Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.923-926
/
2010
A sensor network system processes user queries using the recent field data collected by each sensor node. To process user queries, the system propagates the queries to the specific sensor nodes which have the relevant data and aggregates the results of the queries. However, if continuous queries are processed by the existing scheme, the system has the problem where the queries are propagated repeatedly. In this paper, we propose the query processing scheme to process the continuous queries over the sensor streaming data. To do this, each sensor node builds its own query index on its node. And, we present the scheme to deal with the unexpected data rising on the sensor node.
KIPS Transactions on Software and Data Engineering
/
v.5
no.4
/
pp.171-180
/
2016
As social networking services such as twitter become increasingly popular, data streams are widely prevalent these days. In order to search data accumulated from data streams efficiently, the use of an index structure is essential. In this paper, we propose an update-efficient, disk-based inverted index structure for efficient keyword search on data streams. When new data arrive at the data stream, the index needs to be updated to incorporate the new data. The traditional inverted index is very inefficient to update in terms of disk I/O, because all index data stored in the disk need to be read and written to the disk each time the index is updated. To solve this problem, we divide the whole inverted index into a sequence of inverted indices with exponentially increasing size. When new data arrives, it is first inserted into the smallest index and, later, the small indices are merged with the larger indices, which leads to a small amortize update cost for each new data. Furthermore, when indices stored in the disk are merged with each other, we minimize the disk I/O cost incurred for the merge operation, resulting in an even smaller update cost. Through various experiments, we compare the update efficiency of the proposed index structure with the previous one, and show the performance advantage of the proposed structure in terms of the update cost.
Kim, Dong-Oh;Kang, Hong-Koo;Hong, Dong-Suk;Han, Ki-Joon
Journal of Korea Spatial Information System Society
/
v.8
no.3
/
pp.117-130
/
2006
With the rapid development of technologies related to Ubiquitous Sensor Network (USN), sensors are being utilized in various application areas. In general, the data sensed by each sensor node on ubiquitous sensor networks are stored into the central server for efficient search. Because update is delayed to reduce the cost of update in this environment, uncertain data can be stored in the central server. In addition, Uncertain data make query processing produce wrong results in the central server. Thus, this paper examines how to process uncertain data in ubiquitous sensor networks and suggests a new index for efficient processing of uncertain data. The index reduces the cost of update by delaying update in uncertainty areas. Uncertainty areas are areas where uncertain data are likely to exist. In addition, it solves the problem of low accuracy in search resulting from update delay by delaying update only for specific update areas. Lastly, we analyze the performance of the index and prove the superiority of its performance by comparing its performance evaluation.
In recent years, with the development of portable terminals, various searching services on large data have been provided in portable terminals. In order to search large data, most applications for information retrieval use indexes such as B-trees or R-trees. However, only a small portion of the data set is accessed by users, and the access frequencies of each data are not uniform. The existing indexes such as B-trees or R-trees do not consider the properties of the skewed access patterns. And a cache stores the frequently accessed data for fast access in memory. But the size of memory used in the cache is restricted. In this paper, we propose a new index based on disk, called J-tree, which considers user's search patterns. The proposed index is a balanced tree which guarantees uniform searching time on all data. It also supports fast searching time on the frequently accessed data. Our experiments show the effectiveness of our proposed index under various settings.
Journal of the Korean Data and Information Science Society
/
v.19
no.4
/
pp.1255-1267
/
2008
Evaluation indices for products or services are important to improve the internal process of the company and to compare those with competitive ones. The sigma level in Six Sigma management does important role to evaluate the core characteristic, CTQ(Critical To Quality), derived in the considered product/service or process. In this research, we propose an overall evaluation index for the product/service or process with multiple characteristics, in other words, multiple CTQs. The proposed overall evaluation index is useful for the cases that the single CTQ is not enough to evaluate the practical interests, for example, the final products and services with complex procedures and relatively large scaled processes. This approach is discussed with sigma level for applying Six Sigma Projects, however, it is applicable to indices based on proportion or percentage as well. The practical examples with a manufacturing process and a customer survey based on focus group interview are given for illustrations.
Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.
Most traditional database systems exploit a record-oriented model where the attributes of a record are placed contiguously in a hard disk to achieve high performance writes. However, for read-mostly data warehouse systems, the column-oriented database has become a proper model because of its superior read performance. Today, flash memory is largely recognized as the preferred storage media for high-speed database systems. In this paper, we introduce a column-oriented database model based on flash memory and then propose a new column-aware flash indexing scheme for the high-speed column-oriented data warehouse systems. Our index management scheme, which uses an enhanced $B^+$-Tree, achieves superior search performance by indexing an embedded segment and packing an unused space in internal and leaf nodes. Based on the performance results of two test databases, we concluded that the column-aware flash index management outperforms the traditional scheme in the respect of the mixed operation throughput and its response time.
Journal of information and communication convergence engineering
/
v.6
no.3
/
pp.323-326
/
2008
Data Envelopment Analysis (DEA) is a theoretically sound framework for performance analysis that offers many advantages over traditional methods such as performance ratios and regression analysis. Largely the result of multidisciplinary research during the last three decades in economics, engineering and management, DEA is best described as an effective new way of visualizing and analyzing performance data. Besides, overseas information technology companies have aggressively tried to enter the domestic market. In the age of globalization and high competition, it is imperative that the system integration (SI) companies need to introduce the performance evaluation models of SI projects, including Capability Maturity Model and Software Process Improvement and Capability Determination, to gain a competitive advantage. Therefore, it makes our research regarding evaluation of SI projects very opportune. The purpose of the study is not only to evaluate efficiency of each project by DEA but also to gain insight into various factors such as project complexity, team members' man-months structure, and process index(project management index) that link to the projects performance.
Wildfires in North Korea can have a directly or indirectly affect South Korea if they go south to the Demilitarized Zone. Therefore, this study calculates the regional optimized Forest Fire Danger Index (FFDI) based on Local Data Assessment and Prediction System (LDAPS) weather data to obtain forest fire risk in North Korea, and applied it to the cases in Goseong-gun and Cheorwon-gun, North Korea in April 2022. As a result, the suitability was confirmed as the FFDI at the time of ignition corresponded to the risk class Extreme and Severe sections, respectively. In addition, a qualitative comparison of the risk map and the soil moisture map before and after the wildfire, the correlation was grasped. A new forest fire risk index that combines drought factors such as soil moisture, Standardized Precipitation Index (SPI), and Normalized Difference Water Index (NDWI) will be needed in the future.
In recent times, the global economy has been subject to increasing volatility, which has made it considerably more difficult to accurately predict economic indicators compared to previous periods. In response to this challenge, the present study conducts an exploratory investigation that aims to predict the Business Survey Index (BSI) by leveraging data mining techniques on both structured and unstructured data sources. For the structured data, we have collected information regarding foreign, domestic, and industrial conditions, while the unstructured data consists of content extracted from newspaper articles. By employing an extensive set of 44 distinct data mining techniques, our research strives to enhance the BSI prediction accuracy and provide valuable insights. The results of our analysis demonstrate that the highest predictive power was attained when using data exclusively from the t-1 period. Interestingly, this suggests that previous timeframes play a vital role in forecasting the BSI effectively. The findings of this study hold significant implications for economic decision-makers, as they will not only facilitate better-informed decisions but also serve as a robust foundation for predicting a wide range of other economic indicators. By improving the prediction of crucial economic metrics, this study ultimately aims to contribute to the overall efficacy of economic policy-making and decision processes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.