• Title/Summary/Keyword: Data Generator

Search Result 1,200, Processing Time 0.027 seconds

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

  • Chung, Kwangzoo;Han, Youngyih;Kim, Jinsung;Ahn, Sung Hwan;Ju, Sang Gyu;Jung, Sang Hoon;Chung, Yoonsun;Cho, Sungkoo;Jo, Kwanghyun;Shin, Eun Hyuk;Hong, Chae-Seon;Shin, Jung Suk;Park, Seyjoon;Kim, Dae-Hyun;Kim, Hye Young;Lee, Boram;Shibagaki, Gantaro;Nonaka, Hideki;Sasai, Kenzo;Koyabu, Yukio;Choi, Changhoon;Huh, Seung Jae;Ahn, Yong Chan;Pyo, Hong Ryull;Lim, Do Hoon;Park, Hee Chul;Park, Won;Oh, Dong Ryul;Noh, Jae Myung;Yu, Jeong Il;Song, Sanghyuk;Lee, Ji Eun;Lee, Bomi;Choi, Doo Ho
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.337-343
    • /
    • 2015
  • Purpose: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

Effect of $Al^{3+}$ on Labeling Efficiency and Biodistribution of $^{99m}Tc$-MDP ($Al^{3+}$ 존재가 $^{99m}Tc$-MDP의 표지효율과 생체내 분포에 미치는 영향)

  • Chang, Young-Soo;Jeong, Jae-Min;Kim, Young-Ju;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.361-366
    • /
    • 1996
  • This study was to determine the effect of $Al^{3+}$ in $^{99m}Tc$ eluate from $^{99}Mo-^{99m}Tc$ generator on labeling efficiency and biodistribution of $^{99m}Tc$-MDP. The chromatographic analysis of $^{99m}Tc$-MDP preparations containing $Al^{3+}(0-62.5{\mu}g/ml)$ showed decreased labeling efficiency $^{99m}Tc$ pertechnetate and hydrolyzed reduced $^{99m}Tc$ fraction increased with increasing concentrations of aluminum. However, the chromatography system could not discern between hydrolyzed reduced $^{99m}Tc$ and $^{99m}Tc$ labeled colloid. $^{99m}Tc$-MDP preparations containing aluminum were relatively stable. Chromatographic analysis also confirmed that no significant differences were observed in the radiochemical purity of the filtered and the unfiltered $^{99m}Tc$-MDP preparations containing aluminum by $0.22{\mu}m$ syringe filter. In biodistribution data of ICR-mice, blood and heart uptake were increasing with increasing concentrations of aluminum, because of decreasing labeling efficiency of $^{99m}Tc$-MDP and increasing of $^{99m}Tc$ pertechnetate. However, liver and bone uptake were not significantly increased. In rat images no difference were observed at $5{\mu}g/ml\;Al^{3+}$ compare with at $0{\mu}g/ml\;Al^{3+}$, but at $10{\mu}g/ml\;Al^{3+}$ lumbar uptake was increased. As a practical conclusion, a concentration below $10{\mu}g/ml\;Al^{3+}$($10{\mu}g/ml\;Al^{3+}$ is the maximum allowed in pertechnetate eluate from $^{99}Mo-^{99m}Tc$ generator by USP.) in $^{99m}Tc$-MDP radiopharmaceutical result in low labeling efficiency. Radiochemical purity 90% of $^{99m}Tc$-MDP is the minimum allowed by USP. Therefore, when soft tissue uptake is observed in $^{99m}Tc$-MDP bone scan and labeling efficiency is above 90%, we can expect that $Al^{3+}$ in pertechnetated eluate is not the cause of soft tissue uptake.

  • PDF

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method (Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법)

  • Han, Yong-Hee;Kim, Tae-Hyung;Chun, Song-I;Kim, Dong-Hyeuk;Lee, Kwang-Sig;Eun, Choong-Ki;Jun, Jae-Ryang;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

  • PDF

Balance-Swap Optimization of Economic Load Dispatch Problem using Quadratic Fuel Cost Function (이차 발전비용함수를 사용한 경제급전문제의 균형-교환 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • In this paper, I devise a balance-swap optimization (BSO) algorithm to solve economic load dispatch with a quadratic fuel cost function. This algorithm firstly sets initial values to $P_i{\leftarrow}P_i^{max}$, (${\Sigma}P_i^{max}$ > $P_d$) and subsequently entails two major processes: a balance process whereby a generator's power i of $_{max}\{F(P_i)-F(P_i-{\alpha})\}$, ${\alpha}=_{min}(P_i-P_i^{min})$ is balanced by $P_i{\leftarrow}P_i-{\alpha}$ until ${\Sigma}P_i=P_d$; and a swap process whereby $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_i+{{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}$ = 1.0, 0.1, 0.1, 0.01, 0.001 is set at $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$. When applied to 15, 20, and 38-generators benchmark data, this simple algorithm has proven to consistently yield the best possible results. Moreover, this algorithm has dramatically reduced the costs for a centralized operation of 73-generators - a sum of the three benchmark cases - which could otherwise have been impossible for independent operations.

A Temperature- and Supply-Insensitive 1Gb/s CMOS Open-Drain Output Driver for High-Bandwidth DRAMs (High-Bandwidth DRAM용 온도 및 전원 전압에 둔감한 1Gb/s CMOS Open-Drain 출력 구동 회로)

  • Kim, Young-Hee;Sohn, Young-Soo;Park, Hong-Jung;Wee, Jae-Kyung;Choi, Jin-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.54-61
    • /
    • 2001
  • A fully on-chip open-drain CMOS output driver was designed for high bandwidth DRAMs, such that its output voltage swing was insensitive to the variations of temperature and supply voltage. An auto refresh signal was used to update the contents of the current control register, which determined the transistors to be turned-on among the six binary-weighted transistors of an output driver. Because the auto refresh signal is available in DRAM chips, the output driver of this work does not require any external signals to update the current control register. During the time interval while the update is in progress, a negative feedback loop is formed to maintain the low level output voltage ($V_OL$) to be equal to the reference voltage ($V_{OL.ref}$) which is generated by a low-voltage bandgap reference circuit. Test results showed the successful operation at the data rate up to 1Gb/s. The worst-case variations of $V_{OL.ref}$ and $V_OL$ of the proposed output driver were measured to be 2.5% and 7.5% respectively within a temperature range of $20^{\circ}C$ to $90^{\circ}C$ and a supply voltage range of 2.25V to 2.75V, while the worst-case variation of $V_OL$ of the conventional output driver was measured to be 24% at the same temperature and supply voltage ranges.

  • PDF

Experimental Study on the Inhibition Effect of PVCap to Prevent Formation of Hydrate in Subsea Flowline (해저 유동관내 하이드레이트 형성 방지를 위한 PVCap의 억제효과에 관한 실험 연구)

  • Kim, Young-Min;Choi, Jun-Ho;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.56-64
    • /
    • 2020
  • This study presents the hydrate induction time of PVCap according to subcooling temperature, salt concentration, and MEG concentration in order to analyze the inhibition effect of PVCap in various production environments of offshore gas fields. A high-pressure hydrate generator was made for the hydrate formation experiments. It was verified that the apparatus had sufficient reliability by comparing the results of hydrate equilibrium conditions and induction time from the apparatus with published reference data. As the subcooling temperature increased from 6.1℃ to 12.1℃, the induction time of PVCap concentration of 0.1~1 wt% decreased. When the salt concentration increased from 3 wt% to 7 wt%, the induction time was reduced by up to 78% under the condition of 0.5 wt% PVCap due to polymer structure degradation by salt effect. In the case of HHI (hybrid hydrate inhibitor) made by mixing MEG 10 wt% and PVCap, the change in induction time was not large compared to PVCap 1 wt% due to the under-inhibition effect. On the other hand, the hydrate inhibition efficiency of HHI with MEG 20wt% increased 1.7 times compared to PVCap.

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.