• Title/Summary/Keyword: Data Generalization

Search Result 534, Processing Time 0.024 seconds

The Map Generalization Methodology for Korean Cadastral Map using Topographic Map (수치지형도를 이용한 연속지적도의 지도 일반화 기법 연구)

  • Park, Woo-Jin;Lee, Jae-Eun;Yu, Ki-Yun
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.73-82
    • /
    • 2011
  • Recently, demand for the use of cadastral map is increasing in both public and private area. To use cadastral map in web or mobile environment, construction of the multi-representation database(MRDB) that is the compressed into multiple scale from the original map data is recommended. In this study, the map generalization methodology for the cadastral map by applying overlay with topographic map and polygon generalization technique is suggested. This process is composed of three steps, re-constructing the network data of topographic map, polygon merging of parcel lines according to network degree, and applying line simplification techniques. Proposed methodologies are applied to the cadastral map in Suwon area. The result map was generalized into 1:5,000, 1:20,000, 1:100,000 scale, and data compression ratio was shown in 15% 8% 1% level respectively.

A Study on the Effectiveness of Small-scale Maps Production Based on Tolerance Changes of Map Generalization Algorithm (지도 일반화 알고리듬의 임계값 설정에 따른 소축척 지도 제작의 효용성 연구)

  • Hwakyung Kim;Jaehak Ryu;Jiyong Huh;Yongtae Shin
    • Journal of Information Technology Services
    • /
    • v.22 no.5
    • /
    • pp.71-86
    • /
    • 2023
  • Recently, various geographic information systems have been used based on spatial information of geographic information systems. Accordingly, it is essential to produce a large-scale map as a small-scale map for various uses of spatial information. However, maps currently being produced have inconsistencies between data due to production timing and limitations in expression, and productivity efficiency is greatly reduced due to errors in products or overlapping processes. In order to improve this, various efforts are being made, such as publishing research and reports for automating domestic mapping, but because there is no specific result, it relies on editors to make maps. This is mainly done by hand, so the time required for mapping is excessive, and quality control for each producer is different. In order to solve these problems, technology that can be automatically produced through computer programs is needed. Research has been conducted to apply the rule base to geometric generalization. The algorithm tolerance setting applied to rule-based modeling is a factor that greatly affects the result, and the level of the result changes accordingly. In this paper, we tried to study the effectiveness of mapping according to tolerance setting. To this end, the utility was verified by comparing it with a manually produced map. In addition, the original data and reduction rate were analyzed by applying generalization algorithms and tolerance values. Although there are some differences by region, it was confirmed that the complexity decreased on average. Through this, it is expected to contribute to the use of spatial information-based services by improving tolerances suitable for small-scale mapping regulations in order to secure spatial information data that guarantees consistency and accuracy.

A Study on the Cartographic Generalization of Stream Networks by Rule-based Modelling (규칙기반 모델링에 의한 하계망 일반화에 관한 연구)

  • Kim Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.633-642
    • /
    • 2004
  • This study tries to generalize the stream network by constructing rule-based modelling. A study on the map generalization tends to be concentrated on development of algorithms for modification of linear features and evaluations to the limited cartographic elements. Rule-based modelling can help to improve previous algorithms by application of generalization process with the results that analyzing mapping principles and spatial distribution patterns of geographical phenomena. Rule-based modelling can be applied to generalize various cartographic elements, and make an effective on multi-scaling mapping in the digital environments. In this research, nile-based modelling for stream network is composed of generalization rule, algorithm for centerline extraction and linear features. Before generalization, drainage pattern was analyzed by the connectivity with lake to minimize logical errors. As a result, 17 streams with centerline are extracted from 108 double-lined streams. Total length of stream networks is reduced as 17% in 1:25,000 scale, and as 29% in 1:50,000. Simoo algorithm, which is developed to generalize linear features, is compared to Douglas-Peucker(D-P) algorithm. D-P made linear features rough due to the increase of data point distance and widening of external angle. But in Simoo, linear features are smoothed with the decrease of scale.

Generalized Asymmetrical Bidirectional Associative Memory for Human Skill Transfer

  • T.D. Eom;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.482-482
    • /
    • 2000
  • The essential requirements of neural network for human skill transfer are fast convergence, high storage capacity, and strong noise immunity. Bidirectional associative memory(BAM) suffering from low storage capacity and abundance of spurious memories is rarely used for skill transfer application though it has fast and wide association characteristics for visual data. This paper suggests generalization of classical BAM structure and new learning algorithm which uses supervised learning to guarantee perfect recall starting with correlation matrix. The generalization is validated to accelerate convergence speed, to increase storage capacity, to lessen spurious memories, to enhance noise immunity, and to enable multiple association using simulation work.

  • PDF

The Study of the Generalization for Pythagorean Theorem (피타고라스 정리의 일반화에 관한 고찰)

  • Yoon, Dae-Won;Kim, Dong-Keun
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.221-234
    • /
    • 2010
  • So far, around 370 various verification of Pythagorean Theorem have been introduced and many studies for the analysis of the method of verification are being conducted based on these now. However, we are in short of the research for the study of the generalization for Pythagorean Theorem. Therefore, by abstracting mathematical materials that is, data(lengths of sides, areas, degree of an angle, etc) which is based on Euclid's elements Vol 1 proposition 47, various methods for the generalization for Pythagorean Theorem have been found in this study through scrutinizing the school mathematics and documentations previously studied.

Exploring the feasibility of fine-tuning large-scale speech recognition models for domain-specific applications: A case study on Whisper model and KsponSpeech dataset

  • Jungwon Chang;Hosung Nam
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.83-88
    • /
    • 2023
  • This study investigates the fine-tuning of large-scale Automatic Speech Recognition (ASR) models, specifically OpenAI's Whisper model, for domain-specific applications using the KsponSpeech dataset. The primary research questions address the effectiveness of targeted lexical item emphasis during fine-tuning, its impact on domain-specific performance, and whether the fine-tuned model can maintain generalization capabilities across different languages and environments. Experiments were conducted using two fine-tuning datasets: Set A, a small subset emphasizing specific lexical items, and Set B, consisting of the entire KsponSpeech dataset. Results showed that fine-tuning with targeted lexical items increased recognition accuracy and improved domain-specific performance, with generalization capabilities maintained when fine-tuned with a smaller dataset. For noisier environments, a trade-off between specificity and generalization capabilities was observed. This study highlights the potential of fine-tuning using minimal domain-specific data to achieve satisfactory results, emphasizing the importance of balancing specialization and generalization for ASR models. Future research could explore different fine-tuning strategies and novel technologies such as prompting to further enhance large-scale ASR models' domain-specific performance.

Improving the Generalization Error Bound using Total margin in Support Vector Machines (서포트 벡터 기계에서 TOTAL MARGIN을 이용한 일반화 오차 경계의 개선)

  • Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2004
  • The Support Vector Machine(SVM) algorithm has paid attention on maximizing the shortest distance between sample points and discrimination hyperplane. This paper suggests the total margin algorithm which considers the distance between all data points and the separating hyperplane. The method extends existing support vector machine algorithm. In addition, this newly proposed method improves the generalization error bound. Numerical experiments show that the total margin algorithm provides good performance, comparing with the previous methods.

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

A Study on Training Ensembles of Neural Networks - A Case of Stock Price Prediction (신경망 학습앙상블에 관한 연구 - 주가예측을 중심으로 -)

  • 이영찬;곽수환
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, a comparison between different methods to combine predictions from neural networks will be given. These methods are bagging, bumping, and balancing. Those are based on the analysis of the ensemble generalization error into an ambiguity term and a term incorporating generalization performances of individual networks. Neural Networks and AI machine learning models are prone to overfitting. A strategy to prevent a neural network from overfitting, is to stop training in early stage of the learning process. The complete data set is spilt up into a training set and a validation set. Training is stopped when the error on the validation set starts increasing. The stability of the networks is highly dependent on the division in training and validation set, and also on the random initial weights and the chosen minimization procedure. This causes early stopped networks to be rather unstable: a small change in the data or different initial conditions can produce large changes in the prediction. Therefore, it is advisable to apply the same procedure several times starting from different initial weights. This technique is often referred to as training ensembles of neural networks. In this paper, we presented a comparison of three statistical methods to prevent overfitting of neural network.

  • PDF

Generalization of the Stream Network by the Geographic Hierarchy of Landform Data (지형자료의 계층화를 이용한 하계망 일반화)

  • Kim Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.4 s.109
    • /
    • pp.441-453
    • /
    • 2005
  • This study aims to generalize the stream network developing algorithm of the geographic hierarchy Stream networks with hierarchy system should be spatially hierarchized in linear features. The generalization procedure of the stream networks are composed of the hierarchy of stream, selection and elimination, and algorithm. Working of stream networks is composed by the decision of direction on stream networks, ranking of stroke segments, and ordering by the strahler method, using geographic data query for controlling selection and elimination of the linear feature by scale. Improved Simoo algorithm was effective in enhancement and decreasing curvature of linear features. Resultantly, it is expected to improve generalization of features with various spatial hierarchy.