The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.
위치, 항법 및 시각정보 서비스를 제공하는 위성항법시스템은 위성시스템, 지상시스템, 사용자시스템으로 구성된다. 지상시스템의 구성요소인 감시국은 위성항법시스템의 서비스 제공 및 고장 검출을 위해, 위성항법 신호를 연속적으로 수집하고 위성의 SIS (signal-in-space) 고장과 수신기 및 다중반사파를 포함한 Local 고장과 같은 신호 이상을 검출하여 수신한 데이터와 검출 결과를 중앙처리국으로 전송하는 역할을 한다. 본 논문에서는 기존 위성항법시스템 감시국의 수신한 위성 신호에 대한 품질 판단 및 고장 검출을 위한 주요 모니터와 측정치 전처리 과정을 소개하고, 이를 활용하여 차세대 지역 위성항법시스템 (RNSS; regional navigation satellite system) 감시국의 구성요소와 아키텍처 및 알고리즘 개발 방안을 제시하였다.
수배전분야는 고압 수배전반, 저압 수배전반, 모터 컨트롤 센터(motor control center; MCC)로 구성되며, MCC는 모터의 운전 및 정지를 할 수 있고, 이상상황 발생 시 비상정지 및 이상 상황에 대한 통보를 할 수 있도록 전자식 모터보호계전기(electronic over current relay; EOCR)가 사용되고 있다. 기존 EOCR은 과전류, 부족전류, 결상, 역상, 전류 불평형, 지락과 같은 전기적 결함 탐지는 가능하지만, 구속보호, 모터 고정자 및 회전자, 베어링 결함과 같은 기계적 결함은 탐지가 어렵다. 본 논문에서는 모터의 전기적, 기계적 결함을 탐지하기 위해 기존 EOCR의 전기적 결함 탐지에 기계적 결함 탐지를 결합하여 회전기기 보호장치를 위한 전기적인 결함과 기계적인 결함을 통합적으로 탐지할 수 있는 시스템을 제안한다. 회전기기 결함탐지를 위한 신호입력부 및 제어부, 시스템 인터페이스, 데이터 획득장치를 설계하였으며, 절연저항 측정, 모터 구속 측정 및 제어, MC 카운터 및 베어링 온도 측정 및 제어를 통해 전기적 결함과 기계적 결함 탐지가 가능하였다.
The function of administration and maintenance on the TDX-1 digital switching system, which have been developed in ETRI(Electrotechnology and Telecommunications Research Institute), are reported. In administration, the functions of charging, statistics, data handling, man-mechine communication and I/0 device control are described. In maintenance, the function of fault detection and processing, status handling and alarm described.
Fault diagnosis technique in machining system which is one of engineering techniques absolutely necessary to automation of manufacturing system has been proposed. As a whole, diagnosis process is explained by two steps: sensor data acquisition and reasoning current state of system with the given sensor data. Flexible disk grinding process implemented in milling machine was employed in order to obtain empirical manufacturing process information. Resistance force data during machining were acquired using tool dynamometer known as sensor which is comparably accurate and reliable in operation. Tool status during the process was analyzed using influnece diagram assigning probability from the statistical analysis procedure.
인터넷 트래픽의 폭발적인 증가로 인한 높은 대역폭의 요구와 광 네트워크 기술이 발전되면서 DWDM 네트워크가 국가적 혹은 범세계적인 차세대 광 인터넷(NGOI) 백본망의 대안으로 인식되고 있다. 이러한 DWDM 네트워크 기반의 NGOI에서는 RWA(Routing and Wavelength Assignment) 문제와 생존성이 중요한 이슈가 되고 있다. 특히 높은 데이터 전송율을 가지는 DWDM 네트워크에서 일어나는 짧은 서비스 파괴는 막대한 트래픽 손실을 야기하므로, AOTN에서의 fault/attack 검출, 지역화, 그리고 회복시킴은 가장 중요한 이슈 중 하나가 된다. 본 논문에서는 다양한 광 백본망 소자들의 fault/attack 취약성 분석을 통한 fault/attack 관리 모델을 제안하고, IP/GMPLS over DWDM 내의 제어프로토콜인 Extended-LMP (Link Management Protocol)와 RSVP-TE+(Resource Reservation Protocol-Traffic Engineering)를 이용하여 fault/attack 회복 절차를 제시한다.
본 논문에서는 정압기의 이상 상태 진단을 위한 기계학습 방법을 제안한다. 일반적으로 설비의 이상 상태 탐지를 위한 기계학습 모델 구현에는 관련 센서의 설치와 데이터 수집 과정이 동반되나, 정압기는 설비 특성상 안전문제에 매우 민감하여 추가적인 센서 설치가 매우 까다롭다. 이에 본 논문에서는 센서의 추가 설치 없이 정압기 설비에서 자체 수집되는 유량과 유압 데이터만을 가지고 정압기의 이상 상태를 조기에 판단하는 기계학습 모델을 제안한다. 본 논문에서는 정압기의 비정상데이터가 충분하지 않은 관계로, 모델 학습 시 오버 샘플링(Over-Sampling)을 적용하여 모델이 모든 클래스에 균형적으로 학습하도록 하였다. 또한, 그레이디언트 부스팅(Gradient Boosting), 1차원 합성곱 신경망(1D Convolutional Neural Networks), LSTM(Long Short-Term Memory) 등의 기계학습 알고리즘을 적용하여 정압기의 이상 상태를 판단하는 분류모델을 구현하였고, 실험 결과 그레이디언트 부스팅 알고리즘이 정확도 99.975%로 가장 성능이 우수함을 확인하였다.
As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.
Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권6호
/
pp.1516-1529
/
2023
In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.
임베디드 시스템의 저장매체 시장에서 플래시 메모리가 점유율을 높여나가고 시스템 내에서 대부분의 면적을 차지하게 되면서, 시스템 신뢰도에 무거운 영향을 미치고 있다. 플래시 메모 리는 셀 배열구조에 따라 NOR/NAND-형으로 나뉘어져 있고 플로팅 게이트 셀의 Reference 전압의 갯수 따라 SLC(Single Level Cell)와 MLC(Multi Level Cell)로 구분된다. NAND-형 플래시 메모리는 NOR-형에 비해 속도는 느린 편이지만 대용량화가 쉽고 가격이 저렴하다. 또한 MLC NAND-형 플래시 메모리는 대용량 메모리의 수요가 급격히 높아진 모바일 시장의 영향으로 멀티미디어 데이터 저장의 목적으로 널리 채용되고 있다. 이에 따라 MLC NAND-형 플래시 메모리의 신뢰성을 보장하기 위해 고장 검출 테스팅의 중요도 커지고 있다. 전통적인 RAM에서부터 SLC 플래시 메모리를 위한 테스팅 알고리즘은 많은 연구가 있었고 많은 고장을 검출해 내었다. 하지만 MLC 플래시 메모리의 경우 고장검출을 위한 테스팅 시도가 많지 않았기 때문에 본 논문은 SLC NAND-형 플래시 메모리에서 제안된 기법을 확장한 MLC NAND-형 플래시 메모리를 위한 고장검출 알고리즘을 제안하여 이러한 차이를 줄이려는 시도이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.