• Title/Summary/Keyword: Data Fault Detection

Search Result 438, Processing Time 0.029 seconds

Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool (CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구)

  • 황석현;이진현;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

Fault Detection Technique in Railway High Voltage Distribution Lines using Wavelet Transform (웨이브렛 변환을 이용한 철도 고압배전선로의 고장검출기법)

  • Jung Ho-Sung;Han Moon-Seob;Lee Chang-Mu;Kim Joorak;Lee Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1274-1279
    • /
    • 2004
  • This paper proposes technique to detect ground fault in railway high voltage distribution lines. Overcurrent relay technique is widely used for detecting one line ground fault that occurs most frequently in railway high voltage distribution lines. However, ground fault in distribution line is usually high impedance fault with arc. Because the fault current magnitude measured in substation is very small, the conventional overcurrent relay can't detect the high impedance ground fault. Therefore this paper proposes the advanced technique using wavelet transform. It extracts D1 component from fault signals and detects fault comparing magnitude of D1 component in each phase. To evaluate this proposed technique, we model distribution system using PSCAD/EMTDC and extract various fault data. In conclusion this technique can detect ground fault including high impedance fault regardless of fault distance, fault impedance etc.

  • PDF

Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods (LPC와 DTW 기법을 이용한 유도전동기의 고장검출 및 진단)

  • Hwang, Chul-Hee;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2011
  • This paper proposes an efficient two-stage fault prediction algorithm for fault detection and diagnosis of induction motors. In the first phase, we use a linear predictive coding (LPC) method to extract fault patterns. In the second phase, we use a dynamic time warping (DTW) method to match fault patterns. Experiment results using eight vibration data, which were collected from an induction motor of normal fault states with sampling frequency of 8 kHz and sampling time of 2.2 second, showed that our proposed fault prediction algorithm provides about 45% better accuracy than a conventional fault diagnosis algorithm. In addition, we implemented and tested the proposed fault prediction algorithm on a testbed system including TI's TMS320F2812 DSP that we developed.

A Fault Detection System for Wind Power Generator Based on Intelligent Clustering Method (지능형 클러스터링 기법에 기반한 풍력발전 고장 검출 시스템)

  • Moon, Dae-Sun;Kim, Seon-Kook;Kim, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Nowadays, the utilization of renewable energy sources like wind energy is considered one of the most effective means of generating massive amounts of electricity. This is evident in the rapid increase of wind farms all over the world which comprise a huge number of wind turbines. However, the drawback of utilizing wind turbines is that it requires maintenance, which could be a costly operation. To keep the wind turbines in pristine condition so as to reduce downtime, the implementation of CMS (Condition Monitoring System) and FDS (Fault Detection System) is mandatory. The efficiency and accuracy of these systems are crucial in deciding when to carry out a maintenance process. In this paper, a fault detection system based on intelligent clustering method is proposed. Using SCADA data, the clustering model was trained and evaluated for its accuracy through rigorous simulations. Results show that the proposed approach is able to accurately detect the deteriorating condition of a wind turbine as it nears a downtime period.

A Study on Arc Fault Detection Algorithm Based on Mash-up Analysis Technique (Mash-up 분석기술 기반의 아크 고장 검출 알고리즘에 관한 연구)

  • Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Dong-Woo;Lim, Young-Bea;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.995-1000
    • /
    • 2017
  • In this paper, we present an electrical arc detection algorithm using the mash-up analysis technique which is the core technology for the autonomous electrical safety management system(AESMS) of the multi-unit dwellings. The mash-up analysis technique analyzes the voltage, load current, zero phase current data simultaneously to judge arc faults. In order to develop the arc fault detection algorithm, the characteristics of series arc and parallel arc were analyzed. Also, we propose the mash-up analysis technique that analyzes waveforms of voltage, load current, and zero phase current at the same time. The arc fault detection algorithm was developed using the mash-up analysis technique. The developed algorithm can prevent electrical disasters in an effective way through accident prediction, and it will be used as a basic technology to introduce an autonomous electrical safety management system.

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Fault Detection and Isolation for the Inverter of BLDC Motor Drive using EKF (EKF를 이용한 BLDC 모터 구동기 인버터의 고장 검출 및 분리)

  • Kim, SunKi;Seong, SangMan;Kang, Kiho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.706-712
    • /
    • 2014
  • The inverters used to drive Brushless DC motors (BLDC) include switching devices such as FETs and the faults in FETs cause severe performance degradation in systems where a BLDC acts as actuator. This paper presents a fault detection and isolation method for the FETs of an inverter for BLDC motor control systems, which is based on the EKF (Extended Kalman filter). Firstly, an equivalent circuit model for a BLDC motor plus its inverter system was derived. Secondly, a state-space equation was established, where the on-resistance of the FETs is expressed as a state variable and the EKF equation estimates the on-resistance. If the estimated resistance differs greatly from the known value, it can be asserted that there is a fault on that FET. Thirdly, the local convergence of the established EKF was proved. Finally, through the experiments, the performance of the proposed method was verified. The results show that the on-resistance is estimated close to the value specified in the FET data sheet in normal operation, whereas the estimated resistance is a much larger value than the normal one in case an FET fault occurs. Therefore, it is confirmed that the proposed fault detection and isolation method works appropriately in real systems.

On-load Parameter Identification of an Induction Motor Using Univariate Dynamic Encoding Algorithm for Searches

  • Kim, Jong-Wook;Kim, Nam-Gun;Choi, Seong-Chul;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.852-856
    • /
    • 2004
  • An induction motor is one of the most popular electrical apparatuses owing to its simple structure and robust construction. Parameter identification of the induction motor has long been researched either for a vector control technique or fault detection. Since vector control is a well-established technique for induction motor control, this paper concentrates on successive identification of physical parameters with on-load data for the purpose of condition monitoring and/or fault detection. For extracting six physical parameters from the on-load data in the framework of the induction motor state equation, unmeasured initial state values and profiles of load torque have to be estimated as well. However, the analytic optimization methods in general fail to estimate these auxiliary but significant parameters owing to the difficulty of obtaining their gradient information. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS) newly developed is applied to the identification of whole unknown parameters in the mathematical equations of an induction motor with normal operating data. Profiles of identified parameters appear to be reasonable and therefore the proposed approach is available for fault diagnosis of induction motors by monitoring physical parameters.

  • PDF

A Study on High Impedance Fault Detection using Fast Wavelet Transforms (고속 웨이브렛을 이용한 고저항 고장 검출에 관한 연구)

  • Hong, D.S.;Shim, J.C.;Jong, B.H.;Yun, S.Y.;Bae, Y.C.;Ryu, C.W.;Yim, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2184-2186
    • /
    • 2001
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the fast wavelet transform and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of fast wavelet transform to the various HIF data. These data were measured in actual 22.9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

A Fault Prognostic System for the Logistics Rotational Equipment (물류 회전설비 고장예지 시스템)

  • Soo Hyung Kim;Berdibayev Yergali;Hyeongki Jo;Kyu Ik Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.