• Title/Summary/Keyword: Data Component

Search Result 5,018, Processing Time 0.031 seconds

Development of Active Data Mining Component for Web Database Applications (웹 데이터베이스 응용을 위한 액티브데이터마이닝 컴포넌트 개발)

  • Choi, Yong-Goo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.2
    • /
    • pp.1-14
    • /
    • 2008
  • The distinguished prosperity of information technologies from great progress of e-business during the last decade has unavoidably made software development for active data mining to discovery hidden predictive information regarding business trends and behavior from vary large databases. Therefore this paper develops an active mining object(ADMO) component, which provides real-time predictive information from web databases. The ADMO component is to extended ADO(ActiveX Data Object) component to active data mining component based on COM(Component Object Model) for application program interface(API). ADMO component development made use of window script component(WSC) based on XML(eXtensible Markup Language). For the purpose of investigating the application environments and the practical schemes of the ADMO component, experiments for diverse practical applications were performed in this paper. As a result, ADMO component confirmed that it could effectively extract the analytic information of classification and aggregation from vary large databases for Web services.

  • PDF

A Study on Selecting Principle Component Variables Using Adaptive Correlation (적응적 상관도를 이용한 주성분 변수 선정에 관한 연구)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-84
    • /
    • 2021
  • A feature extraction method capable of reflecting features well while mainaining the properties of data is required in order to process high-dimensional data. The principal component analysis method that converts high-level data into low-dimensional data and express high-dimensional data with fewer variables than the original data is a representative method for feature extraction of data. In this study, we propose a principal component analysis method based on adaptive correlation when selecting principal component variables in principal component analysis for data feature extraction when the data is high-dimensional. The proposed method analyzes the principal components of the data by adaptively reflecting the correlation based on the correlation between the input data. I want to exclude them from the candidate list. It is intended to analyze the principal component hierarchy by the eigen-vector coefficient value, to prevent the selection of the principal component with a low hierarchy, and to minimize the occurrence of data duplication inducing data bias through correlation analysis. Through this, we propose a method of selecting a well-presented principal component variable that represents the characteristics of actual data by reducing the influence of data bias when selecting the principal component variable.

Development of the RP and SP Combined using Error Component Method (Error Component 방법을 이용한 RP.SP 결합모형 개발)

  • 김강수;조혜진
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.119-130
    • /
    • 2003
  • SP data have been widely used in assessing new transport policies and transport related plans. However, one of criticisms of using SP is that respondents may show different reaction between hypothetical experiments and real life. In order to overcome the problem, combination of SP and RP data has been suggested and the combined methods have been being developed. The purpose of this paper is to suggest a new SP and RP combined method using error component method and to verify the method. The error component method decomposes IID extreme value error into non-IID error component(s) and an IID error component. The method estimates both of component parameters and utility parameters in order to obtain relative variance of SP data and RP data. The artificial SP and RP data was created by using simulation and used for the analysis, and the estimation results of the error component method were compared with those of existing SP and RP combined methods. The results show that regardless of data size, the parameters of the error component method models are similar to those assumed parameters much more than those of the existing SP and RP combined models, indicating usefulness of the error component method. Also the values of time for error component method are more similar to those assumed values than those of the existing combined models. Therefore, we can conclude that the error component method is useful in combining SP and RP data and more efficient than the existing methods.

A Comparison on Independent Component Analysis and Principal Component Analysis -for Classification Analysis-

  • Kim, Dae-Hak;Lee, Ki-Lak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.717-724
    • /
    • 2005
  • We often extract a new feature from the original features for the purpose of reducing the dimensions of feature space and better classification. In this paper, we show feature extraction method based on independent component analysis can be used for classification. Entropy and mutual information are used for the selection of ordered features. Performance of classification based on independent component analysis is compared with principal component analysis for three real data sets.

  • PDF

Interoperability of OpenGIS Component and Spatial Analysis Component (개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동)

  • Min, Kyoung-Wook;Jang, In-Sung;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.49-62
    • /
    • 2001
  • Recently, component-based software has become main trends in designing and developing computer software products. This component-based software has advantage of the interoperability on distributed computing environment and the reusability of pre-developed components. Also, GIS is designed and implemented with this component-based methodology, called Open GIS Component. OGC(OpenGIS Consortium) have announced various implementation and design specification and topic in GIS. In GIS, Spatial analysis functions like network analysis, TIN analysis are very important function and basically, estimate system functionality and performance using this analysis methods. The simple feature geometry specification is announced by OGC to increase the full interoperability of various spatial data. This specification includes just geometry spatial data model. However, in GIS which manages spatial data, not only geometric data but also topological data and various analysis functions have been used. The performance of GIS depends on how this geometric and topological data is managed well and how various spatial analyses are executed efficiently. So it requires integrated spatial data model between geometry and topology and extended data model of topology for spatial analysis, in case network analysis and TIN analysis in open GIS component. In this paper, we design analysis component like network analysis component and TIN analysis component. To manage topological information for spatial analysis in open GIS component, we design extended data model of simple feature geometry for spatial analysis. In addition to, we design the overall system architecture of open GIS component contained this topology model for spatial analysis.

  • PDF

Principal component regression for spatial data (공간자료 주성분분석)

  • Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.311-321
    • /
    • 2017
  • Principal component analysis is a popular statistical method to reduce the dimension of the high dimensional climate data and to extract meaningful climate patterns. Based on the principal component analysis, we can further apply a regression approach for the linear prediction of future climate, termed as principal component regression (PCR). In this paper, we develop a new PCR method based on the regularized principal component analysis for spatial data proposed by Wang and Huang (2016) to account spatial feature of the climate data. We apply the proposed method to temperature prediction in the East Asia region and compare the result with conventional PCR results.

Development of Component Reliability Database for Korean Nuclear Power Plants and Chemical Plants (국내 원자력 발전소 및 화학공장의 기기 신뢰도 데이터베이스 구축)

  • 최선영;한상훈
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.269-277
    • /
    • 2000
  • The component reliability database is required in PSA (Probabilistic Safety Analysis) for NPP (Nuclear Power Plant). We have applied a generic database to the PSA for the Korean NPPs, since there is no specific component reliability database. Therefore we are developing the plant-specific component reliability database for domestic NPPs. We also extend the experience and knowledge of PSA and component reliability database for NPP to chemical industry We collect the raw data like component operation history and maintenance history and then input the required data for the component reliability database through failure analysis. With the database, we can not only perform PSA with real data but also perform maintenance optimization.

  • PDF

A Study of Automatic Medical Image Segmentation using Independent Component Analysis (Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구)

  • Bae, Soo-Hyun;Yoo, Sun-Kook;Kim, Nam-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.

Simple principal component analysis using Lasso (라소를 이용한 간편한 주성분분석)

  • Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.533-541
    • /
    • 2013
  • In this study, a simple principal component analysis using Lasso is proposed. This method consists of two steps. The first step is to compute principal components by the principal component analysis. The second step is to regress each principal component on the original data matrix by Lasso regression method. Each of new principal components is computed as the linear combination of original data matrix using the scaled estimated Lasso regression coefficient as the coefficients of the combination. This method leads to easily interpretable principal components with more 0 coefficients by the properties of Lasso regression models. This is because the estimator of the regression of each principal component on the original data matrix is the corresponding eigenvector. This method is applied to real and simulated data sets with the help of an R package for Lasso regression and its usefulness is demonstrated.

Construction of Data Book for Understanding Software Components (소프트웨어 컴포넌트 이해를 위한 데이터 북 구성)

  • Kim, Seon-Hui;Choe, Eun-Man
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.399-408
    • /
    • 2002
  • Component technology was proposed and applied to software development to overcome software crisis. Software component is a black box like an integrated circuit in hardware but it can not be utilized without good support specially for helping users understand efficiently. This paper shows that data book format for understanding hardware component can be well applied to representing software component. We selected an approach to understand component by matching the contents of data book with UML and API model technique. Besides, we added the architecture part and the interface which are the most important property of software component to the data book for software components. In order to verify effectiveness of components data book we extended batch descriptor in EJB and performed an experiment providing data book to programmers with components.