• Title/Summary/Keyword: Data Collecting

Search Result 2,254, Processing Time 0.025 seconds

Design of Data Center Environmental Monitoring System Based On Lower Hardware Cost

  • Nkenyereye, Lionel;Jang, Jongwook
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.63-68
    • /
    • 2016
  • Environmental downtime produces a significant cost to organizations and makes them unable to do business because what happens in the data center affects everyone. In addition, the amount of electrical energy consumed by data centers increases with the amount of computing power installed. Installation of physical Information Technology and facilities related to environmental concerns, such as monitoring temperature, humidity, power, flood, smoke, air flow, and room entry, is the most proactive way to reduce the unnecessary costs of expensive hardware replacement or unplanned downtime and decrease energy consumed by servers. In this paper, we present remote system for monitoring datacenter implementing using open-source hardware platforms; Arduino, Raspberry Pi, and the Gobetwino. The sensed data displayed through Arduino are transferred using Gobetwino to the nearest host server such as temperature, humidity and distance every time an object hitting another object or a person coming in entrance. The raspberry Pi records the sensed data at the remote location. The objective of collecting temperature and humidity data allows monitoring of the server's health and getting alerts if things start to go wrong. When the temperature hits $50^{\circ}C$, the supervisor at remote headquarters would get a SMS, and then they would take appropriate actions to reduce electrical costs and preserve functionality of servers in data centers.

A Semantic Network Analysis of Big Data regarding Food Exhibition at Convention Center (전시컨벤션센터 식품박람회와 관련된 빅데이터의 의미연결망 분석)

  • Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • The purpose of this study was to visualize the semantic network with big data related to food exhibition at convention center. For this, this study collected data containing 'coex food exhibition/bexco food exhibition' keywords from web pages and news on Google during one year from January 1 to December 31, 2016. Data were collected by using TEXTOM, a data collecting and processing program. From those data, degree centrality, closeness centrality, betweenness centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of hospitality and destinations was high. In addition, the web visibility was also high for convention center programs, such as festival, exhibition, k-pop and event; hospitality related words, such as tourists, service, hotel, cruise, cuisine, travel. Convergence of iterated correlations showed 4 clustered named "Coex", "Bexco", "Nations" and "Hospitality". It is expected that this diagnosis on food exhibition at convention center according to changes in domestic environment by using these web information will be a foundation of baseline data useful for establishing convention marketing strategies.

An Exploratory Study on the Semantic Network Analysis of Food Tourism through the Big Data (빅데이터를 활용한 음식관광관련 의미연결망 분석의 탐색적 적용)

  • Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.4
    • /
    • pp.22-32
    • /
    • 2017
  • The purpose of this study was to explore awareness of food tourism using big data analysis. For this, this study collected data containing 'food tourism' keywords from google web search, google news, and google scholar during one year from January 1 to December 31, 2016. Data were collected by using SCTM (Smart Crawling & Text Mining), a data collecting and processing program. From those data, degree centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of 'core service' and 'social marketing' was high. In addition, the web visibility was also high for destination, such as rural, place, ireland and heritage; 'socioeconomic circumstance' related words, such as economy, region, public, policy, and industry. Convergence of iterated correlations showed 4 clustered named 'core service', 'social marketing', 'destinations' and 'social environment'. It is expected that this diagnosis on food tourism according to changes in international business environment by using these web information will be a foundation of baseline data useful for establishing food tourism marketing strategies.

Energy-Aware Video Coding Selection for Solar-Powered Wireless Video Sensor Networks

  • Yi, Jun Min;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.101-108
    • /
    • 2017
  • A wireless image sensor node collecting image data for environmental monitoring or surveillance requires a large amount of energy to transmit the huge amount of video data. Even though solar energy can be used to overcome the energy constraint, since the collected energy is also limited, an efficient energy management scheme for transmitting a large amount of video data is needed. In this paper, we propose a method to reduce the number of blackout nodes and increase the amount of gathered data by selecting an appropriate video coding method according to the energy condition of the node in a solar-powered wireless video sensor network. This scheme allocates the amount of energy that can be used over time in order to seamlessly collect data regardless of night or day, and selects a high compression coding method when the allocated energy is large and a low compression coding when the quota is low. Thereby, it reduces the blackout of the relay node and increases the amount of data obtained at the sink node by allowing the data to be transmitted continuously. Also, if the energy is lower than operating normaly, the frame rate is adjusted to prevent the energy exhaustion of nodes. Simulation results show that the proposed scheme suppresses the energy exhaustion of the relay node and collects more data than other schemes.

Developing a Multi-purpose Ecotoxicity Database Model and Web-based Searching System for Ecological Risk Assessment of EDCs in Korea (웹 기반 EDCs 생태 독성 자료베이스 모델 및 시스템 개발)

  • Kwon, Bareum;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.5
    • /
    • pp.412-421
    • /
    • 2017
  • Objectives: To establish a system for integrated risk assessment of EDCs in Korea, infrastructure for providing toxicity data of ecological media should be established. Some systems provide soil ecotoxicity databases along with aquatic ecotoxicity information, but a well-structured ecotoxicity database system is still lacking. Methods: Aquatic and soil ecotoxicological information were collected by a toxicologist based on a human readable data (HRD) format for collecting ecotoxicity data that we provided. Among these data, anomalies were removed according to database normalization theory. Also, the data were cleaned and encoded to establish a machine-readable data (MRD) ecotoxicity database system. Results: We have developed a multi-purpose ecotoxicity database model focusing on EDCs, ecological species, and toxic effects. Also, we have constructed a web-based data searching system to retrieve, extract, and download data with greater availability. Conclusions: The results of our study will contribute to decision-making as a tool for efficient ecological risk assessment of EDCs in Korea.

A Study on Traffic Data Collection and Analysis for Uninterrupted Flow using Drones (드론을 활용한 연속류 교통정보 수집·분석에 관한 연구)

  • Seo, Sung-Hyuk;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.144-152
    • /
    • 2018
  • This study focuses on collecting traffic data using drones to compensate for limitation of the data collected by the existing traffic data collection devices. Feasibility analysis was performed to verify the traffic data extracted from drone videos and optimal methodology for extracting data was established through analysis of various data reduction scenarios. It was found from this study that drones are very economical traffic data collection devices and have strength of determining the level-of-service(LOS) for uninterrupted flow condition in a very simple and intuitive way.

Analysis of Business Performance of Local SMEs Based on Various Alternative Information and Corporate SCORE Index

  • HWANG, Sun Hee;KIM, Hee Jae;KWAK, Dong Chul
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.3
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose: The purpose of this study is to compare and analyze the enterprise's score index calculated from atypical data and corrected data. Research design, data, and methodology: In this study, news articles which are non-financial information but qualitative data were collected from 2,432 SMEs that has been extracted "square proportional stratification" out of 18,910 enterprises with fixed data and compared/analyzed each enterprise's score index through text mining analysis methodology. Result: The analysis showed that qualitative data can be quantitatively evaluated by region, industry and period by collecting news from SMEs, and that there are concerns that it could be an element of alternative credit evaluation. Conclusion: News data cannot be collected even if one of the small businesses is self-employed or small businesses has little or no news coverage. Data normalization or standardization should be considered to overcome the difference in scores due to the amount of reference. Furthermore, since keyword sentiment analysis may have different results depending on the researcher's point of view, it is also necessary to consider deep learning sentiment analysis, which is conducted by sentence.

Conditional Variational Autoencoder-based Generative Model for Gene Expression Data Augmentation (유전자 발현량 데이터 증대를 위한 Conditional VAE 기반 생성 모델)

  • Hyunsu Bong;Minsik Oh
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Gene expression data can be utilized in various studies, including the prediction of disease prognosis. However, there are challenges associated with collecting enough data due to cost constraints. In this paper, we propose a gene expression data generation model based on Conditional Variational Autoencoder. Our results demonstrate that the proposed model generates synthetic data with superior quality compared to two other state-of-the-art models for gene expression data generation, namely the Wasserstein Generative Adversarial Network with Gradient Penalty based model and the structured data generation models CTGAN and TVAE.

A Study on the Sentiment Analysis of City Tour Using Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.112-117
    • /
    • 2023
  • This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.

Analysis of Xiaomi Trends Using Big Data - Based on Customer Perception at Domestic and Global - (빅데이터를 활용한 샤오미 동향분석 - 국내외 고객인식을 바탕으로 -)

  • Eunji Lee;Jaeyoung Moon
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.2
    • /
    • pp.323-340
    • /
    • 2024
  • Purpose: The purpose of this study was to propose useful suggestions by analyzing research Xiaomi which are big data analyses, by collecting data based on Customer Perception in Textom. Methods: The collected data through scraping social media on the Textom site. And data preprocessing was performed using deleting and organizing data(text) that are duplicated, irrelevant, and where there is no meaning. The derived data were analyzed using Textom and Ucinet 6.0 with Text Analysis, WordClould, TF-IDF, Network Analysis, and Emotional analysis. Results: The results of this study are as follows; although the results of Xiaomi's text at domestic and global were similar, it was analyzed that there were perceptions of Xiaomi-related smart home products and cost-effectiveness in Korea, while in foreign countries, there were perceptions of functions and performance centered on smartphones. At domestic and global, the perception of Xiaomi was analyzed to be positive, and implications were presented based on these analysis results. Conclusion: Based on the results, if the product's performance or product competitiveness is considered to be meaningful in the market, and it is expected that there will be an opportunity to change the overall image of Chinese products.