• 제목/요약/키워드: Damping simulation

검색결과 746건 처리시간 0.023초

UPFC의 동적 시뮬레이션 알고리즘 개발 (Development of Dynamic Simulation Algorithm of UPFC)

  • 손광명;김동현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.226-228
    • /
    • 1999
  • This paper presents a dynamic simulation algorithm for studying the effect of Unified Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The algorithm is a Newton-type one and gives a fast convergence characteristics. The algorithm is applied to inter-area power oscillation damping regulator design of a sample two-area power system. The results show that UPFC is very effective for damping inter-area oscillations.

  • PDF

UPFC의 전력개통 동요 억제 효과 (Effect of UPFC for Damping Power System Oscillations)

  • 손광명;오태규;김학만;전진홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.887-889
    • /
    • 1998
  • This paper focuses on the simulation and ciontrol of the Unified Power Flow Controller (UPFC). This paper gives a brief outline of the initial results of the effect of the UPFC on the damping of the power system oscillations. The nonlinear simulation results show the effectiveness of each UPFC control variable and gives the future research direction.

  • PDF

엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구 (Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance)

  • 유성훈;윤현성;여동현;이준희;박종수;심지현
    • Composites Research
    • /
    • 제37권2호
    • /
    • pp.59-67
    • /
    • 2024
  • 내열성 및 내충격성, 진동 감쇠 성능이 필수인 엔진마운트 브라켓(engine mount braket)에 적용하기 위한 PA소재 기반 복합재료 제조 방법에 대한 연구를 실시하였다. 복합재료의 기지재로 PA66 수지를 활용하였고, 강화재로 유리섬유를 활용하였다. 복합재료는 injection molding 방법으로 제조하였으며, 보강재인 유리섬유 함량에 따라 열적 특성과 기계적 특성, 형태학적 특성 분석을 진행하였다. 이때, 복합재료의 특성 평가 데이터베이스를 in-put 데이터로 활용하여 3D 모델을 생성하였다. 생성된 3D모델의 진동 감쇠 성능(vibration damping)을 out-put 데이터로 추출하였다. PA기반 복합재료의 특성평가 및 엔진브라켓 형태 3D모델의 진동 감쇠 성능에 대한 시뮬레이션을 진행하는 이유는 실제 자동차 부품을 제조하여 진동 감쇠 성능 시험을 진행하지 않아도 제품의 성능을 예측할 수 있기 때문에, 우수한 제품을 개발하기 위한 개발 비용이 감소할 수 있다. 실제로 시험을 진행하지 않고도 제품 성능을 예측할 수 있기 때문에, 제품 개발에 필요한 시간도 절감할 수 있을 것이라 예상된다. 진동 감쇠 성능 시뮬레이션 결과, 강화재의 질량분율이 높아질수록 진동감쇠 성능이 비례하여 증가하는 경향을 나타내지만, 어느 수준 이상에서는 더 이상 증가하지않고, 소폭 감소하는 결과를 나타내었다. 실제 실험값과 시뮬레이션 값과의 비교 결과, ±5% 이내의 근사치를 나타내었으며, 강화재의 질량분율이 60 wt.%일 때 결과값의 차이가 가장 크게 발생하였다.

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

시뮬레이션과 모형시험을 통한 핀 안정기의 성능평가 (Performance Evaluation of Fin-Stabilizer by Model Test and Time-domain Simulation)

  • 홍사영;김현조;최윤락;신영균;유병석;이승준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.86-90
    • /
    • 2001
  • Demand of good seakeeping perfomace is increasing for sea going vessels such as cruisers, naval ships and container ships. Especillay roll motion is one of major concerns in evaluation of seakeeping performance due to its large resonace motion. Since large roll resonance motion is mainly arised from inherent small damping. use of additional mechnism to provide roll damping can significantly reduce roll motion. In this paper, a reliable performace evaluation method of fin stabilizer, which is very useful for stabilizing roll motion of mid and high speed vessls, is described. Model test and time domain simulation methods are adopted for performance evaluation in which real operating situation of fin stabilizer can be exactly modelled. Model test and simulation results show good correlations between model test and simulation results.

  • PDF

Cross Correlated Effects of Radiation Damping and the Distant Dipolar Field with a Pulsed Field Gradient in Solution NMR

  • Chung Kee-Choo;Ahn Sang-Doo
    • 한국자기공명학회논문지
    • /
    • 제10권1호
    • /
    • pp.46-58
    • /
    • 2006
  • With a simple pulse sequence ($\pi/2$-{gradient, duration T}-acquisition) in solution NMR, detected signal has slowly grown up to percents of the equilibrium magnetization. The source of this unusual resurrection of dephased magnetization after a crushed gradient is cross-correlated effects of radiation damping and the distant dipolar field, which has been demonstrated by a numerical simulation and theoretical analysis.

  • PDF

Influence of geometry and loading conditions on the dynamics of martensitic fronts

  • Berezovski, Arkadi
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.123-135
    • /
    • 2008
  • Damping capacity of SMA damping devices is simulated numerically under distinct geometry and loading conditions. Two-dimensional numerical simulations are performed on the basis of a phenomenological model of dynamics of martensite-austenite phase boundaries. Results of the simulations predict the time delay and the value of the stress transferred to other parts of a construction by a damper device.

탄성 댐퍼가 추가된 대형철골 구조물의 응답특성 (Response Of Steel Frame Structures With Added Elastic Dampers)

  • 배춘희;조철환;양경현;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.808-812
    • /
    • 2002
  • The feasibility of using elastic dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of elastic dampers are briefly described. A procedure for evaulating the elastic damping effect when added to a structure is proposed in which the damping effect of elastic dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.

  • PDF

Interlinking 컨버터의 부하 변동에 따른 액티브 댐핑을 위한 최적 제어 알고리즘 (Optimal control algorithm for active damping of interlinking converter in the variable load conditions)

  • 김태규;이훈;최봉연;강경민;김미나;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.373-374
    • /
    • 2020
  • This paper proposes an optimal control algorithm which determines active damping resistor values considering load variation and grid side current THD. Proposed optimal control algorithm improves grid side current THD of the interlinking converter without passive damping resistor and is verified by simulation under variable load conditions.

  • PDF

A study on performance assessment of WEC rotor in the Jeju western waters

  • Poguluri, Sunny Kumar;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.361-380
    • /
    • 2018
  • The dynamic performance of the wave energy converter (WEC) rotor with different geometric parameters such as depth of submergence and beak angle has been assessed by considering the linear potential flow theory using WAMIT solver and along with the computational fluid dynamics (CFD). The effect of viscous damping is incorporated by conducting numerical free decay test using CFD. The hydrodynamic coefficients obtained from the WAMIT, viscous damping from the CFD and estimated PTO damping are used to solve the equation of motion to obtain the final pitch response, mean optimal power and capture width. The viscous damping is almost 0.9 to 4.6 times when compared to the actual damping. It is observed that by neglecting the viscous damping the pitch response and power are overestimated when compared to the without viscous damping. The performance of the pitch WEC rotor in the Jeju western coast at the Chagwido is analyzed using Joint North Sea Wave Project (JONSWAP) spectrum and square-root of average extracted power is obtained. The performance of WEC rotor with depth of submergence 2.8 m and beak angle $60^{\circ}$ found to be good compared to the other rotors.