• Title/Summary/Keyword: Damping simulation

Search Result 746, Processing Time 0.027 seconds

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.

Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure (초대형 반잠수식 해양 구조물의 최적 감쇠 모델에 대한 고찰)

  • Lee, Hyebin;Bae, Yoon Hyeok;Kim, Dongeun;Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In order to analyze the response of the offshore structure numerically, the linear potential theory is generally applied for simplicity, and only the radiation damping is considered among various damping forces. Therefore, the results of a numerical simulation can be different from the motion of the structure in a real environment. To reduce the differences between the simulation results and experimental results, the viscous damping, which affects the motion of the structure, is also taken into account. The appropriate damping model is essential for the numerical simulation in order to obtain precise responses of the offshore structure. In this study, various damping models such as linear or quadratic damping and the nonlinear drag force from numerous slender bodies were used to simulate the free decay motion of the platform, and its characteristics were confirmed. The optimized damping model was found by comparing the simulation results to the experimental results. The hydrodynamic forces and wave exciting forces of the structure were obtained using WAMIT, and the free decay test was simulated using OrcaFlex. A free decay test of the scale model was performed by KRISO.

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

TRACKING FOR HIGH-ORDER DAMPING OF THIN BEAM OSCILLATION

  • Yoo, Wan-Suk;Lee, Jae-Wook;Kim, Hyun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.984-989
    • /
    • 2008
  • An estimation of high-order damping in flexible multibody dynamic simulation is introduced in this paper. The suggested damping model based on the experimental modal analysis leads to more accurate correlation results comparing to the traditional linear damping model because it directly uses the modal parameters of each mode achieved from experiment even high frequency modes. The modal parameters until the 5th mode are extracted from the experimental modal testing of the flexible beam using a high speed camera. And using the measured damping ratio and natural frequency until the 5th mode, the generic damping model is constructed. Then, the ANCF (absolute Nodal Coordinate Formulation) simulation results are compared to experimental results until the 5th mode.

  • PDF

Experimental Study on Damping of Side-by-Side Moored Vessels (병렬계류된 선박의 감쇠력에 관한 실험연구)

  • KIM JIN-HA;HONG SA-YOUNG;KIM YOUNC-SIK;KIM DEOK-SU;KIM YOUNG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • Low-frequency damping characteristics of side-by-side moored LNG-FPSO and LNGC arc investigated through a series of free decay model tests in calm water and under wind load condition. It is shown that low frequency damping of LNGC changes dramatically, sway damping increases more than six times for 4m distance condition while it decreases by $30\%$ for 20m distance compared with a single LNGC case. Simulation using the experimental data enhances the results, which demonstrates the necessity of experimental low-frequency damping coefficients for simulation of side-by-side vessels motion behavior.

  • PDF

Equivalent Physical Damping Parameter Estimation for Stable Haptic Interaction (안정적인 햅틱 상호작용을 위한 등가 물리적 댐핑 추정)

  • Kim, Jong-Phil;Seo, Chang-Hhoon;Ryu, Je-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • This paper presents offline estimation of equivalent physical damping parameter in haptic interaction systems where damping is the most important parameter for stability. Based on the previous energy bounding algorithm, an offline procedure is developed in order to estimate the physical damping parameter of a haptic device by measuring energy flow-in to the haptic device. The proposed method does not use force/torque sensor at the handgrip. Numerical simulation and experiments verified effectiveness of the proposed method.

  • PDF

A Simulation for the Impact Response Analysis of a Motor Cycle Helmet (시뮬레이션에 의한 오토바이 헬멧의 충격 응답 분석)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.25-31
    • /
    • 1999
  • To analyze the impulsive response of a motorcycle helmet, a simulation is performed using the finite element method. Based upon the simulation result, an equivalent one degree of freedom vibrational system is adapted, and transient impulsive responses are analysed to investigate the influence of engineering parameters such as damping, natural frequency, and impact velocity on the impulsive response of the helmet. Maximum gravitational acceleration reduces as the damping factor value increases. When the damping factor value is around 0.6 or larger, the maximum acceleration does not change. With respect to the natural frequency and the impact velocity, it increases linearly. The relationship between head injury criterion(HIC) and maximum gravitational acceleration is also presented. The scheme of this study is expected to be utilized to economize the design process of high quality motorcycle helmets.

  • PDF

Simulation of the damping effect of a high-rise CRST frame structure

  • Lu, Xilin;Zhang, Hongmei;Meng, Chunguang
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.245-255
    • /
    • 2012
  • The damping effect of a Concrete-filled Rectangular Steel Tube (CRST) frame structure is studied in this paper. Viscous dampers are employed to insure the function of the building especially subjected to earthquakes, for some of the main vertical elements of the building are not continuous. The shaking table test of a 1:15 scale model was conducted under different earthquake excitations to recognize the seismic behavior of this building. And the vibration damping effect was also investigated by the shaking table test and the simulation analysis. The nonlinear time-history analysis of the shaking table test model was carried out by the finite element analysis program CANNY. The simulation model was constructed in accordance with the tested one and was analyzed under the same loading condition and the simulation effect was then validated by the tested results. Further more, the simulation analysis of the prototype structure was carried out by the same procedure. Both the simulated and tested results indicate that there are no obvious weak stories on the damping equipped structure, and the dampers can provide the probability of an irregular CRST frame structure to meet the requirements of the design code on energy dissipation and deformation limitation.