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Abstract 
An estimation of high-order damping in flexible multibody dynamic simulation is introduced in this paper. The 

suggested damping model based on the experimental modal analysis leads to more accurate correlation results 

comparing to the traditional linear damping model because it directly uses the modal parameters of each mode achieved 

from experiment even high frequency modes. The modal parameters until the 5th mode are extracted from the 

experimental modal testing of the flexible beam using a high speed camera. And using the measured damping ratio and 

natural frequency until the 5th mode, the generic damping model is constructed. Then, the ANCF (absolute Nodal 

Coordinate Formulation) simulation results are compared to experimental results until the 5th mode. 

INTRODUCTION 

The ANCF (Absolute Nodal Coordinate Formulation) which was introduced recently [1,2] can represent arbitrary large 

deformations easily because it use finite slopes as nodal variables from the inertial frame. Thus, the ANCF is well 

known as proper formulation to simulate large deformable structures. And there are numerous papers to verify their 

large deformable models with experiments [3,4]. But, All researchers of these papers used the linear damping model for 

the simplicity. And none of all have focused on high mode behaviors of their flexible structures. Because it is 

impossible for the linear damping model to predict high order behaviors, they had only focused first mode behavior. 

And Garcia-Vallejo suggested the internal damping model based on linear visco-elasticity for the ANCF [8]. He made 

an effort to make a damping model which can express no energy dissipation under rigid body motion. But because of 

their thin structure in large deformation problem, the external damping is more important than the internal damping in 

most mechanical application except hyperelastic or viscoelastic materials.  

So, in this paper, a high-order damping in multibody dynamic simulation is introduced to correlate the high 

frequency behaviors. The suggested damping model based on the experimental modal analysis leads to more accurate 

correlation results comparing to the traditional linear damping model because it directly uses the modal parameters of 

each mode achieved from experiment even high frequency modes.  
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MODAL TESTING AND PARAMETERS IDENTIFICATION 

Experimental setup  

In this research, a thin spring-steel beam heat-treated to increase its strength and durability is selected. And the standard 

sectional properties of beam are shown in Table 1. In this experiment, the fundamental frequency of test beam is only 

1.85[Hz]. Therefore, a high-speed camera is used to capture the motion instead of accelerometers. The high-speed 

camera, REDLAKE Motion Scope 1000s shown in Fig. 1, is used in this study. Vibration signal made by LabVIEW is 

transferred to the Exciter using PXI 4461 board. The large deformation experimental setup for the beam is constructed 

as shown in Fig. 1. The target point is necessary to track the beam position by using the high speed camera. 

   
Fig. 1 Experimental Equipment 

Table 1 Properties of the beam 

 

 

Length 

[mm] 

Width

[mm] 

Thickness 

[mm] 

Density 

[kg/m3] 

Elastic Modulus 

[MPa] 

Standard 500 5.0 0.50 8000.0 210,000 

Optimum 500 5.0 0.49 8108.0 205,130 

Modal testing and parameter identification  

Due to the flexibility of the thin beam, the traditional modal testing is difficult to use. So, in this study, the damped 

decay test of free vibrating beam is used as a proper test procedure. The beam is located on the vertical direction and is 

excited along the horizontal direction with their natural frequencies until a steady states behavior occurs. When the 

beam reaches to a steady-state, a sudden drop of the excitation makes the beam vibrate with their natural properties. 

And then the natural frequency and damping ratio can be found with Eq. (1), which is a 1 D.O.F. free vibration 

equation.  
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where 21d nω ω ξ= − is damped natural frequency. The modal parameters to be calculated are the values which the 

residue between Eq. (1) and test data is minimized such as Eq. (2). Table 2 shows the resultant modal parameters 

identified from the experiment results of beam. 

Table 2. Identified modal parameters 

 
natural frequency

[Hz] 

damping ratio

[%] 

1st mode 1.85 1.00 

2nd mode 10.19 0.28 

3rd mode 26.84 0.28 

4th mode 53.20 0.23 

5th mode 88.60 0.30 

MATCHING OF HIGH FREQUENCY MODES 

Optimization to match natural frequency 

Because the spring-steel used in this study has been heat treated, there is no guarantee that the natural properties of 

simulation coincide with those of experiment. Table 3 shows the difference of natural frequencies in the case of using 

standard properties of steel.  

So, first of all, the optimization process had been carried out to find proper material properties. The beam used in 

this study has 20 finite elements, 84 coordinates and 4 constraint equations. Design variables are selected as the width 

and height of each beam elements and elastic modulus and density. And the variance of those design variables is limited 

within 10[%]. To correlate with natural characteristic, the objective function is chosen to minimize the residue of natural 

frequencies and modes from the 1st to the 5th mode. The resultant design variables are listed in Table 1, and Table 3 

shows the optimized results. 

Table 3. Optimized results of frequency analysis 

Natural Freq. Test [Hz] 
Simulation [Hz] 

Standard Optimum 

1st mode 1.85 1.67 1.84 

2nd mode 10.19 10.47 10.18 

3rd mode 26.84 29.32 26.81 

4th mode 53.20 57.46 53.15 

5th mode 88.60 94.97 88.79 

 

 

 



Linear viscous damping model 

Considering effects of internal and external dissipation, linear damping model is widely used in structural dynamic 

environment for the sake of simplicity. In this model, a particular form of proportional Rayleigh damping is 

implemented such as Eq. (3).  
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α and where  is a mass matrix and is a stiffness matrix. And values, β , depend on frequencies ω1 and ω2 as 

well as on damping ratios ζ1 and ζ2 for the first two modes of the system.  

Generic viscous damping model 

In the previous section, one can see that it is impossible to correlate the high frequency behavior of the structure using 

the linear damping model. The linear damping model can express the motion of only maximum two frequencies. So, a 

new damping model which can have frequency dependent properties and express the independent high frequency 

damping characteristic is necessary. So, in this study, frequency dependent generic damping model based on the 

experimental modal analysis is also introduced into flexible multibody dynamics [5,6]. 

From the identified modal parameters, the generalized damping matrix can be derived using the modal 

transformation. Modal transformation is the transformation from identified damping matrix in modal domain to general 

damping matrix in physical reference domain using mode vectors. With the undamped natural modal vector Φ , one can 

calculate the generic viscous damping matrix using orthogonal properties, as shown in Eq. (5). Eq. (6) shows the 

resultant generic damping model matrix.  
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where ,r rζ ω are the critical damping ratio and natural frequency extracted from the experiment, respectively. 

Results from ANCF simulation 

Experiment and simulation with base excitation are carried out from the 1st mode to the 5th mode. Using marker 

tracking method, displacement of the beam is measured. In Fig. 2 ~ 4, ‘Experiment’ means the measurement of modal 



testing, ‘Simulation 01’, blue thin dashed line, means the results of the generic damping model and ‘Simulation 02’, red 

thick dashed line, means those of the linear damping model. Fig. 2 shows damped behaviors of experiment and 

simulation at the 1st and 2nd mode frequency. Both results are almost same. So, one can know that the identified 

parameters and generic damping model give good results. Due to two constraint parameters using the first two modes, 

the linear damping model also gives good results until the 2nd mode frequency. Fig. 3 ~ 4 show the damped decay 

response of the 3rd, 4th and 5th mode frequency, respectively. 
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Fig. 2 Damped behavior of Exp. and Sim. : 1st mode(left) , 2nd mode(right) 
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Fig. 3 Damped behavior of Exp. and Sim. : 3rd mode(left) , 4th mode(right) 
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Fig. 4 Damped behavior of Exp. and Sim. : 5th mo  de



Those results show that the lin acteristics comparing to those 

of th

CONCLUSION 

It is well-popular that it is difficult to measure and identify the frequency behaviors even the 2nd mode in the large 
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