• 제목/요약/키워드: Damping Rate

검색결과 256건 처리시간 0.035초

오리피스 유량해석을 통한 전륜 착륙장치의 착륙성능평가 (Nose Landing Gear Drop-test Simulation using Numerical Analysis about Orifice)

  • 황재업;배재성;황재혁;홍예선;박상준;정태경
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2014
  • This thesis is simulated a aircraft nose landing gear drop-test. flow rate-to-pressure difference characteristics of damping orifices for a nose landing gear is investigated by CFD analyses. Orifice is kind of poppet valve type. it is simulated pressure drop with variable orifice area. it is simulated landing gear model by using ADAMS with CFD result. It's performance evaluated landing gear drop-test and analyzed the results.

풍응답계측시 RD법에 의한 고층건물의 동적특성의 진폭의존성 (Amplitude Dependent Dynamic Properties of Tall Building under the Strong Wind)

  • 윤성원
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.61-68
    • /
    • 2004
  • 풍향풍속계와 구조 모니터링 시스템을 설치하여 강풍과 거물의 동적 특성을 계측하였다. 계측건물은 속초의 산기슭에 위치하고 있다. 감쇠율과 고유진동수의 진폭 의존성을 분석하였다. 감쇠율의 진폭의존성은 9%로서, 가속도진폭이 증가함에 따라서 감쇠율이 명료하게 증가하는 경향을 보였다. 계측데이터에서 얻은 동적 특성의 경향은 사용성 평가시 건물의 동적 특성을 평가하는데 유용하게 사용되리라 기대된다.

  • PDF

ADAMS를 이용한 Door Damper 동적거동 해석 (Door Damper Simulation using ADAMS)

  • 황재업;권용철;배재성;황재혁;홍예선
    • 항공우주시스템공학회지
    • /
    • 제6권2호
    • /
    • pp.13-17
    • /
    • 2012
  • In this study the flow rate-to-pressure difference characteristics of short-tube type damping orifices for a aircraft door damper were investigated by CFD analyses. For the verification of the CFD analysis results the actual performance of a door damper was measured and compared with them. and The dynamic response of door damper is Simulated using ADAMS. it's performance is evaluated comparing to the experiment result of door damper.

The dynamic relaxation method using new formulation for fictitious mass and damping

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.109-133
    • /
    • 2010
  • This paper addresses the modified Dynamic Relaxation algorithm, called mdDR by minimizing displacement error between two successive iterations. In the mdDR method, new relationships for fictitious mass and damping are presented. The results obtained from linear and nonlinear structural analysis, either by finite element or finite difference techniques; demonstrate the potential ability of the proposed scheme compared to the conventional DR algorithm. It is shown that the mdDR improves the convergence rate of Dynamic Relaxation method without any additional calculations, so that, the cost and computational time are decreased. Simplicity, high efficiency and automatic operations are the main merits of the proposed technique.

Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information

  • Hsu, Ting-Yu;Huang, Chih-Hua;Wang, Shiang-Jung
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.39-53
    • /
    • 2021
  • By means of installing sloped rolling-type seismic isolators (SRI), the horizontal acceleration transmitted to the to-be-protected object above can be effectively and significantly reduced under external disturbance. To prevent the maximum horizontal displacement response of SRI from reaching a threshold, designing large and conservative damping force for SRI might be required, which will also enlarge the transmitted acceleration response. In a word, when adopting seismic isolation, minimizing acceleration or displacement responses is always a trade-off. Therefore, this paper proposes that by exploiting the possible information provided by an earthquake early warning system, the damping force applied to SRI which can better control both acceleration and displacement responses might be determined in advance and accordingly adjusted in a semi-active control manner. By using a large number of ground motion records with peak ground acceleration not less than 80 gal, the numerical results present that the maximum horizontal displacement response of SRI is highly correlated with and proportional to some important parameters of input excitations, the velocity pulse energy rate and peak velocity in particular. A control law employing the basic form of hyperbolic tangent function and two objective functions are considered in this study for conceptually developing suitable control algorithms. Compared with the numerical results of simply designing a constant, large damping factor to prevent SRI from pounding, adopting the recommended control algorithms can have more than 60% reduction of acceleration responses in average under the excitations. More importantly, it is effective in reducing acceleration responses under approximately 98% of the excitations.

RTS test study and numerical simulation of mechanical properties of HDR bearings

  • Peng, Tianbo;Wu, Yicheng
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.299-307
    • /
    • 2017
  • High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.

유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법 (Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper)

  • 이덕영;박성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

인삼 모잘록병 (Rhizoctonia soEani)에 대한 Tolclofos-methyl의 효과 (Effect of Tolclofos-methyl on damping-off of ginseng seedlings incited by Rhisoctonia solani)

  • 유연현;조대희;오승환
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.114-118
    • /
    • 1989
  • Tolclofos-methyl applied as seed dipping at 1,000 ppm for 3 hrs before sowing and soil drenching at the rate of 300 g ai./10 a in the middle of April protected emerging seedlings of Panax ginseng from damping-off caused by Rhiiutonia solani(AG2-1) in Yangjik Soil artificially infested with the pathogen. Germination rates with tolclofos-methyl, pencycuron, and control were 53.7%, 45.8%, and 7.5%, respectively, while the rate of the seeds at non-infested soil was 62.6%. The effectiveness of Tolclofos-methyl against the pathogen in the soil lasted upto 32 days in vitro. However, the transpiratio of ginseng seedlings increased greatly with chemical treatment, showing 0.02, 0.12, and 0.24 m1/cm2 leaf area/day at 0, 1,2, and 4 ppm a.i. of the fungicide, respectively.

  • PDF

CONVERGENCE AND DECAY ESTIMATES FOR A NON-AUTONOMOUS DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT COEFFICIENTS

  • Kim, Eun-Seok
    • 호남수학학술지
    • /
    • 제44권2호
    • /
    • pp.281-295
    • /
    • 2022
  • This paper deals with the long - time behavior of global bounded solutions for a non-autonomous dispersive-dissipative equation with time-dependent nonlinear damping terms under the null Dirichlet boundary condition. By a new Lyapunov functional and Łojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, which depends on the decay of the non-autonomous term g(x, t), when damping coefficients are integral positive and positive-negative, respectively.

Modeling of vibration protection by shape memory alloy parts with an account of latent heat

  • Fedor S. Belyaev;Margarita E. Evard;Aleksandr E. Volkov;Maria S. Starodubova
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.243-251
    • /
    • 2024
  • Modeling of vibrations of a rotating pendulum with working shape memory alloy rod has been performed in the frames of a microstructural model taking into account the latent heat release, absorption and the heat exchange during direct and reverse martensitic transformation. It has been shown that the influence of the latent heat, the rate of preliminary deviation of the pendulum from the equilibrium, the rate of heating and cooling can have a significant impact on the vibrations and damping characteristics of the system.