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CONVERGENCE AND DECAY ESTIMATES FOR A

NON-AUTONOMOUS DISPERSIVE-DISSIPATIVE EQUATION

WITH TIME-DEPENDENT COEFFICIENTS

Eun-Seok Kim

Abstract. This paper deals with the long − time behavior of global

bounded solutions for a non-autonomous dispersive-dissipative equation
with time-dependent nonlinear damping terms under the null Dirichlet

boundary condition. By a new Lyapunov functional and  Lojasiewicz-

Simon inequality, we show that any global bounded solution converges to
a steady state and get the rate of convergence as well, which depends on

the decay of the non-autonomous term g(x, t), when damping coefficients
are integral positive and positive-negative, respectively.

1. Introduction

We consider a non-autonomous semilinear dispersive-dissipative equation
with time-dependent nonlinear damping terms
(1.1)
utt−∆utt−∆u+k1(t)h(ut)−k2(t)∆ut + f(x, u) = g(x, t), (x, t) ∈ Ω× [0,∞),

subject to the null Dirichlet boundary and initial conditions

(1.2) u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with a smooth boundary ∂Ω, the
function u0, u1 : Ω → R are given initial data, the nonlinear function f, h, and
non-autonomous term g will be specified later.

Our model (1.1) is closely related to equation

utt − ∆utt − ∆u = 0,

which is very interesting not only from the point of general theory of PDE,
but also from the applications in dynamics. For example, the propagation of
transverse homogeneous waves in the oscillation of viscoelastic solids ([11]) and
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the longitudinal vibration of a bar ([15, p.428]; [16]; [17]) for one-dimensional
case.

In the past decades, there have been many results on well-posedness and
qualitative properties to the dispersive-dissipative equations with nonlinearity.
We refer readers to [2,4,14,18,19] for the equations with constant coefficients.
Especially, the existence of local solution and global solution ([4,14,18]), the
estimate of exponentially decay rate for global solutions with positive defi-
nite energy ([2,18]) and blow-up property of solutions with arbitrarily positive
initial energy ([4,19]). In this paper, we would like to investigate the asymp-
totic behavior of global solutions to the initial boundary problem of nonlinear
dispersive-dissipative wave equation with time-dependent damping, particu-
larly, the convergence to steady states of all global bounded solutions and the
estimate of convergence rate.

For autonomous case (g = 0), after 30 years development, there have been
many results on convergence to steady states of solutions, see Jendoubi [12],
Haraux and Jendoubi [5,6] (linear damping with constant coefficient); Hassen
and Haraux [8] (nonlinear damping with constant coefficient), et al. Recently,
Jiao [13] investigated the following wave equation with time-dependent damp-
ing and analytic nonlinearity

utt − ∆u+ k(t)ut = f(u), (x, t) ∈ Ω × [0,∞).

Under Dirichlet boundary condition, he established the result that global solu-
tions converged to a steady state as time went to infinite when k(t) is integrally
positive, by virtue of generalized  Lojasiewicz-Simon inequality. Furthermore,
he presented the Dirichlet initial boundary value problem of a class of wave
equations with nonlinear interior damping and analytic nonlinear source term

utt − ∆u+ k(t)h(ut) = f(u), (x, t) ∈ Ω × [0,∞),

where h satisfied (H1) h ∈ C1(R) is a monotone increasing function such that
0 < m1 ≤ h′(s) ≤ m2 < ∞, ∀s ∈ R. (H2) h(0) = 0. He also gave the similar
result of an abstract damping wave equation with analytic nonlinear source
term.

For the study of non-autonomous case (g ̸= 0), Chill and Jendoubi [1]
considered the wave equation with linear damping

utt − ∆u+ ut + f(u) = g(x, t), (x, t) ∈ Ω × [0,∞).

Under the assumption that f is analytic and g satisfies

sup
t∈R+

(1 + t)1+γ

∫ ∞

t

∥g(s)∥22ds <∞,

they proved the global bounded solution converged to a steady state. Later,
Hassen [9] improved the result of [1] and established the exponential decay
rate. Hassen and Chergui [10] investigated the following non-autonomous wave
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equation with nonlinear damping

utt − ∆u+ |ut|αut + f(u) = g(x, t), (x, t) ∈ Ω × [0,∞),

under the null Dirichlet boundary condition, where α is a small positive con-
stant. By assuming f is analytic and g(·, t) tends to 0 sufficiently fast in L2(Ω)
as t tends to ∞, i.e.

∥g(·, t)∥2L2(Ω) ≤
C

(1 + t)1+δ+α
, ∀t ∈ R+,

they proved the solution converged to a steady state without convergence rate.
Furthermore, we refer to [20] for the non-autonomous semilinear viscoelastic
equation. The key point is that all these papers used an inequality, so called
 Lojasiewicz-Simon inequality, to obtain their results. However, it requests the
nonlinearity f(x, s) is analytic with respect to s.

In view of the works mentioned above, much less effort has been devoted
to initial boundary value problem for a non-autonomous dispersive-dissipative
equation with time-dependent nonlinear damping terms to our knowledge. The
main difficulty is to construct an appropriate new Lyapunov function available
to  Lojasiewicz-Simon inequality. Our aim is to find the effect of the time-
dependent damping terms and the decay of non-autonomous terms on conver-
gence and the estimates of convergence rate.

The outline of the paper is as follows. In Section 2, we introduce the basic
tools used in the statements and proofs of the main results. Section 3 is devoted
to present the main results and proofs.

Throughout the present paper, the following notations are used for all state-
ments.

• We denote (·, ·)H1
0 (Ω), (·, ·)∗ and (·, ·)2 (respectively ∥ · ∥H1

0 (Ω), ∥ · ∥∗ and

∥ ·∥2) as the inner products (respectively the norms) on the space H1
0 (Ω),

H−1(Ω) and L2(Ω). The norm on Lp(Ω) is denoted by ∥ · ∥p.

• Denote by C (somewhere Ci,(i ∈ N+)) a generic constant may be differ-
ent and depend on parameters and the measure of Ω, but can be chosen
independently of t ∈ R+.

2. Preliminary

In this section, we prepare some material needed in the proof of our results.
Firstly, we impose some assumptions on nonlinear weak damping function h
and nonlinearity f as follows.

(H) h ∈ C(R), h(0) = 0, and there exist α1 ≥ α2 > 0 such that

α1 ≤ h′(v) ≤ α2, ∀v ∈ R.

(F1) The function f is analytic in s and uniformly with respect to x ∈ Ω.

(F2) sf(s) ≥ 0, ∀s ∈ R.
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(F3) f(x, s) and ∂f
∂s (x, s) are bounded in Ω×(−c, c) for all c > 0 if N = 1, 2; or

f(x, 0) ∈ L∞(Ω) and there exist ρ0 ≥ 0 and µ > 0 satisfying (N−2)µ < 4
such that

|∂f
∂s

(x, s)| ≤ ρ0(1 + |s|µ), a.e. s ∈ (−∞,∞),

if N ≥ 3.

Remark 2.1. It follows clearly from (F2) that F (x, s) =
∫ s

0
f(x, τ)dτ ≥ 0,

∀s ∈ R.

In addition, we assume that, for some γ > 0, the function g ∈ L2(R+;L2(Ω))
satisfies the following polynomial condition:

(G1) supt∈R+(1 + t)1+γ
∫∞
t

∥g(s)∥22ds <∞,

or the exponential condition:

(G2) supt∈R+ eγt
∫∞
t

∥g(s)∥22ds <∞.

Similar to [3], we can get the result of existence and uniqueness of global
weak solution by a Faedo-Galerkin method.

Proposition 2.2. Suppose that nonlinear function f, h satisfy (H) and
(F1)-(F3), the damping coefficients ki(i = 1, 2) meet some conditions, which
will be given in Section 3, then for given initial data (u0, u1) ∈ H1

0 (Ω)×H1
0 (Ω),

problem (1.1)-(1.3) admits a unique global solution u such that

u ∈ C(R+;H1
0 (Ω)), ut ∈ C(R+;H1

0 (Ω)).

The proofs of our convergence results depend on an appropriate new Lya-
punov function, compactness properties, and  Lojasiewicz-Simon inequality for
the energy functional E : H1

0 (Ω) → R defined by

(2.1) E(u) =
1

2
∥∇u∥22 +

∫
Ω

F (x, u)dx.

Proposition 2.3. ([11]) Suppose the assumptions (F1)-(F3) on f hold, then
the energy function E ∈ C2(H1

0 (Ω)) satisfies the  Lojasiewicz-Simon inequality
near every equilibrium point ϕ ∈ H1

0 (Ω), that is, for every ϕ ∈ Σ,

Σ = {ϕ ∈ H2(Ω) ∩H1
0 (Ω) : −∆ϕ+ f(x, ϕ) = 0},

there exist βϕ > 0, σϕ > 0 and 0 < θϕ ≤ 1
2 such that

|E(ϕ) − E(ψ)|1−θϕ ≤ βϕ∥ − ∆ψ + f(x, ψ)∥∗,

for all ψ ∈ H1
0 (Ω) such that ∥ϕ − ψ∥H1

0 (Ω) < σϕ. The number θϕ is called the
 Lojasiewicz exponent of E at ϕ.

Note that, we claim to prove convergence to equilibrium of any solution
having relatively compact range in the energy space. The following assumption
guarantees the boundedness of any global solution for problem (1.1)-(1.3):
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(F4) There exist λ < µλ1 and C > 0 such that

F (x, u) ≤ λu2

2
+ C, for all u ∈ R,

where λ1 > 0 is the optimal constant of the following Poincaré inequality

λ1∥u∥22 ≤ ∥∇u∥22, u ∈ H1
0 (Ω).

Proposition 2.4. Assume that (F4) holds and let u be a global solution
of (1.1)-(1.3), then (u, ut) is bounded in H1

0 (Ω) ×H1
0 (Ω).

Next, we present a lemma that plays a key role in the estimation of the rate
of convergence, whose proof can be found in [9].

Lemma 2.5. Let ξ ∈ W 1,1
loc (R+, R+). We suppose that there exists con-

stants K1 > 0, K2 ≥ 0, p > 1 and q > 0 such that for almost t ≥ 0 we
have

d

dt
ξ(t) +K1ξ

p(t) ≤ K2(1 + t)−q.

Then there exists a positive constant K > 0 such that

ξ(t) ≤ K(1 + t)−m, m = inf{ 1

p− 1
,
q

p
}.

3. Main results

In this section, we present the convergence result of every global solution for
problem (1.1)-(1.3), when damping coefficients k1(t), k2(t) satisfy appropriate
conditions.

3.1. The integrally positive case

Definition 3.1. A function k : [0,+∞) → [0,+∞) is said to be integrally
positive, if for every ε > 0, there exist η > 0 such that∫ t+ε

t

k(s)ds ≥ η, ∀t ≥ 0.

Remark 3.2. From the definition above, we note that the function h may
vanish somewhere but not on any interval. Furthermore, it is clear that there
exist a constant κ > 0 such that k(t) > κ a.e. t ∈ R.

Our first main result, which establishes the convergence result to the prob-
lem when damping coefficients k1(t), k2(t) are integrally positive, can be given
as follows.

Theorem 3.3. Suppose that k1(t), k2(t) are integrally positive, nonlinear
functions h and f satisfy (H) and (F1)-(F3), respectively. Furthermore, assume
that g satisfies (G1) or (G2). Let u be a global solution of problem (1.1)-(1.3)
and assume also that
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(T1) (u, ut) is bounded in H1
0 (Ω) ×H1

0 (Ω);

(T2) {u(t) : t ≥ 0} is relatively compact in H1
0 (Ω).

Then there exists ϕ ∈ Σ such that

∥ut(t)∥H1
0 (Ω) + ∥u(t) − ϕ∥H1

0 (Ω) → 0,

as t → ∞. Moreover, let θ = θϕ ∈ (0, 12 ] be the  Lojasiewicz exponent of E at
ϕ. Then the following assertions holds.
(i) If 0 < θ < 1

2 and g satisfies the polynomial growth (G1), then we have

∥u(t) − ϕ∥H1
0 (Ω) = o((1 + t)−χ), t→ ∞,

where

χ =

{
inf{ θ

1−2θ ,
γ
2 }, if g ̸= 0,

θ
1−2θ , if g = 0.

(ii) If θ = 1
2 and g satisfies the exponential growth (G2), then we have

∥u(t) − ϕ∥H1
0 (Ω) = o(e−ζt), t→ ∞,

where ζ > 0.

Let us recall the ω−limit set of a continuous function u : R+ → H1
0 (Ω),

which is defined as

ω(u) = {ϕ ∈ H1
0 (Ω) : ∃tn → +∞ s.t. lim

n→∞
∥u(tn) − ϕ∥H1

0 (Ω) = 0}.

From well-known results on dynamical systems [7], if u is a continuous function
with relatively compact range, the corresponding ω−limit set is a non-empty,
compact and connected subset of H1

0 (Ω). Therefore, we present some auxiliary
results as follows.

Lemma 3.4. Let u : R+ → H1
0 (Ω) be a weak solution of problem (1.1)-

(1.3) and suppose that the assumptions of Theorem 3.3 still hold. Then, we
have
(i) ut ∈ L2(R+;H1

0 (Ω));
(ii) the function E is a constant on ω(u), and ω(u) ⊆ Σ;
(iii) limt→∞ ∥∇ut(t)∥2 = limt→∞ ∥∇u(t)∥2 = 0.

Proof. Without less of generality, we assume k1(t), k2(t) ≥ κ > 0 for all
t ∈ R, and let Θ : R+ → R be the function defined by

(3.1) Θ(t) =
1

2
∥ut∥22 +

1

2
∥∇ut∥22 + E(u(t)) + C0

∫ ∞

t

∥g(s)∥22ds,

where C0 = 1
4ε0

and 0 < ε0 < α1κ. Multiplying (1.1) by ut, integrating over Ω
and then using integration by parts, we can obtain

d

dt
Θ(t) ≤ ε0∥ut∥22 − k1(t)

∫
Ω

h(ut)utdx− k2(t)∥∇ut∥22

≤ −(α1κ− ε0)∥ut∥22 − κ∥∇ut∥22.
(3.2)
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Therefore, the energy function Θ is decreasing and the limit

lim
t→∞

Θ(t) = inf
t≥0

Θ(t) = Θ∞,

exist, since it is also bounded from below. From this and the inequality (3.2)
we obtain (i).

Let ϕ ∈ ω(u), then there exists an unbounded increasing sequence {tn}n∈N+

in R+ such that u(tn) → ϕ in H1
0 (Ω). Since ut ∈ L2(R+;H1

0 (Ω)), we have

u(tn + s) = u(tn) +

∫ tn+s

tn

uτ (τ)dτ → ϕ in H1
0 (Ω),

for every s ∈ [0, 1]. Hence E(u(tn + s)) → E(ϕ) in R for every s ∈ [0, 1].
Consequently, using the dominated convergence theorem,

E(ϕ) = lim
n→∞

∫ 1

0

E(u(tn + s))ds.

Therefore, by integrating Θ(tn + ·) over (0, 1), we derive that

E(ϕ) = lim
n→∞

∫ 1

0

Θ(u(tn + s))ds = Θ∞.

Here we have used (i) and the fact that ut is bounded in H1
0 (Ω). Since ϕ was

chosen arbitrarily in ω(u), E is a constant on ω(u) and ω(u) ⊆ Σ. Moreover,
since u has compact range in H1

0 (Ω), we obtain

lim
t→∞

E(u(t)) = Θ∞ = E∞.

Then we obtain (iii) by (3.1) and the equality above.

The proof of Theorem 3.3.

We divide the proof into 3 steps.

Step 1. Let us define the Lyapunov functional as

Γ0(t) = Θ(t) + ε(−∆u+ f(x, u), ut − ∆ut)∗,

where Θ(t) satisfies (3.1) and ε > 0 is a constant which will be specified later.

Firstly, we estimate d
dtΓ0(t).

Using (3.2) and computing directly, we have

d

dt
Γ0(t) ≤− (α1κ− ε0)∥ut∥22 − κ∥∇ut∥22 + ε(−∆ut +

∂f

∂u
(x, u)ut, ut − ∆ut)∗

− ε(−∆u+ f(x, u),∆u− f(x, u) − k1(t)h(ut) + k2(t)∆ut + g(x, t))∗

≤− (α1κ+ ε0)∥ut∥22 − κ∥∇ut∥22 − ε(−∆ut +
∂f

∂u
(x, u)ut, ut − ∆ut)∗

− ε

2
∥ − ∆u+ f(x, u)∥2∗ +

ε

2
∥k1(t)h(ut) − k2(t)∆ut − g(x, t)∥2∗.

(3.3)
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Noting that, for N ≥ 3 and 0 < µ < 4
N−2 , using (F3) and the boundedness of

u in H1
0 (Ω), we can derive

∥∂f
∂u

(x, u)ut∥∗ ≤C sup
∥φ∥

H1
0(Ω)

≤1

(

∫
Ω

|utφ|dx+

∫
Ω

|u|µ|ut||φ|dx)

≤C sup
∥φ∥

H1
0(Ω)

≤1

(∥ut∥2∥φ∥2 + ∥ut∥ 2N
N−2

∥φ∥ 2N
N−2

∥uµ∥N
2

)

≤C∥∇ut∥2.

(3.4)

For N = 1, 2, we can also derive the estimate above by (F3) (setting µ = 1).
Moreover, computing directly, we have the following estimate

∥∆ut∥∗ ≤C sup
∥φ∥

H1
0(Ω)

≤1

∫
Ω

|∆utφ|dx

≤C sup
∥φ∥

H1
0(Ω)

≤1

∫
Ω

|∇ut · ∇φ|dx

≤C sup
∥φ∥

H1
0(Ω)

≤1

∥∇ut∥2∥∇φ∥2

≤C∥∇ut∥2.

(3.5)

Similarly, we have

(3.6) ∥∆u∥∗ ≤ C∥∇u∥2.
Combining (3.3)-(3.5) and choosing ε > 0 small enough, then we have

(3.7)
d

dt
Γ0(t) ≤ −C1{∥∇ut∥22 + ∥ − ∆u+ f(x, u)∥2∗} + C2∥g(t)∥22.

Now, let us define the functional

Γ(t) = Γ0(t) + C2

∫ ∞

t

∥g(s)∥22ds.

Then by (3.7), we see that

d

dt
Γ(t) ≤− C1{∥∇ut∥22 + ∥ − ∆u+ f(x, u)∥2∗}

≤ − C{∥∇ut∥2 + ∥ − ∆u+ f(x, u)∥∗}2,
(3.8)

for all t ≥ T. By virtue of (3.3)-(3.6), using the boundedness of f(x, u) in (F3),
we see that

(−∆u+ f(x, u), ut − ∆ut)∗ ≤ C(∥ut∥22 + ∥∇ut∥22 + ∥∇u∥22).

Therefore, Γ(t) ≥ 0, for ε > 0 small enough. Then Γ(t) is non-negative and
non-increasing on [T,∞), and so that Γ(t) has a limit at infinity.

Step 2. Now, we consider the following two possibilities:
Case 1. If the function g satisfies the polynomial growth (G1), then, for θ = θϕ
as in Proposition 2.3. Let θ0 ∈ (0, θ] be such that (1 + γ)(1 − θ0) > 1, i.e.
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θ0 <
γ

1+γ . Note that  Lojasiewicz-Simon inequality is satisfied with θ replaced by

θ0. Then, by applying the Cauchy-Schwarz inequality and Young’s inequality,
we obtain

[Γ(t) − E(ϕ)]1−θ0 ≤ C{∥ut∥2(1−θ0)
2 + ∥∇ut∥2(1−θ0)

2 + |E(u) − E(ϕ)|1−θ0

+ ∥ − ∆u+ f(x, u)∥∗ + ∥ut − ∆ut∥
1−θ0
θ0

∗

+ (

∫ ∞

t

∥g(s)∥22ds)1−θ0}.

(3.9)

Noting that 2(1 − θ0) > 1 and 1−θ0
θ0

> 1, which together with Lemma 3.4 (iii)
imply that

[Γ(t) − E(ϕ)]1−θ0 ≤C{∥∇ut∥2 + |E(u) − E(ϕ)|1−θ0 + ∥ − ∆u+ f(x, u)∥∗

+ (

∫ ∞

t

∥g(s)∥22ds)1−θ0}

≤C{∥∇ut∥2 + |E(u) − E(ϕ)|1−θ0 + ∥ − ∆u+ f(x, u)∥∗
+ (1 + t)−(1+γ)(1−θ0)},

(3.10)

if we choosing T > 0 large enough.
Since ϕ ∈ ω(u), there exist {tn}n≥1 : tn → ∞, such that

(3.11) u(tn) → ϕ, n→ ∞, in H1
0 (Ω).

And we also get

(3.12) lim
n→∞

E(tn) = E(ϕ).

It has been proved in Step1 that Γ(t) has a limit at infinity and by means of
(3.11), we have for all δ > 0, δ ≪ σϕ, there exists N > 0 such that tN > T and

(3.13) ∥u(tN ) − ϕ∥H1
0 (Ω) <

δ

3
,

and for ∀t ≥ tN , we have

(3.14)
C3

θ0
{[Γ(tN ) − E(ϕ)]θ0 − [Γ(t) − E(ϕ)]θ0} < δ

3C4
,

(3.15)
C3

θ0
{|(1 + tN )1−(1+γ)(1−θ0) − (1 + t)1−(1+γ)(1−θ0)|} < δ

3C4
,

and

(3.16) Γ(t) ≥ E(ϕ).

Let
t̄ = sup{t ≥ tN : ∥u(s) − ϕ∥H1

0 (Ω) < σϕ,∀s ∈ [tN , t]}.
Then by Proposition 2.3 and (3.10), for all t ∈ [tN , t̄), we see that

(3.17) [Γ(t)−E(ϕ)]1−θ0 ≤ C{∥∇ut∥2+∥−∆u+f(x, u)∥∗+(1+t)−(1+γ)(1−θ0)}.
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Moreover, by computing directly, we can derive

(3.18) − d

dt
[Γ(t) − E(ϕ)]θ0 = −θ0[Γ(t) − E(ϕ)]θ0−1 d

dt
Γ(t).

Combining (3.8), (3.17) and (3.18), we see that

− d

dt
[Γ(t) − E(ϕ)]θ0 ≥ θ0C{∥∇ut∥2 + ∥ − ∆u+ f(x, u)∥∗}2

∥∇ut∥2 + ∥ − ∆u+ f(x, u)∥∗ + (1 + t)−(1+γ)(1−θ0)

≥θ0C{∥∇ut∥2 + ∥ − ∆u+ f(x, u)∥∗
− (1 + t)−(1+γ)(1−θ0)}.

(3.19)

Integrating (3.19) over [tN , t̄) to obtain∫ t̄

tN

∥∇ut∥2dt ≤
∫ t̄

tN

{∥∇ut∥2 + ∥ − ∆u+ f(x, u)∥∗}

≤C3

θ0
{|[Γ(tN ) − E(ϕ)]θ0 − [Γ(t) − E(ϕ)]θ0 |

+ |(1 + tN )1−(1+γ)(1−θ0) − (1 + t)1−(1+γ)(1−θ0)|}.

(3.20)

Assuming t̄ <∞, then by (3.13)-(3.15) and (3.20), we get

∥u(t̄) − ϕ∥H1
0 (Ω) ≤

∫ t̄

tN

∥ut∥H1
0 (Ω)dt+ ∥u(tN ) − ϕ∥H1

0 (Ω)

≤C4

∫ t̄

tN

∥∇ut∥2dt+ ∥u(tN ) − ϕ∥H1
0 (Ω)

<δ,

which contradicts the definition of t̄. Therefore, t̄ = ∞. Then it follows from
(3.20) that ∫ ∞

tN

∥∇ut∥2dt <∞,

which implies the integrability of u in H1
0 (Ω). Since the compactness of the

range of u, we have

lim
t→∞

∥u(t) − ϕ∥H1
0 (Ω) = 0.

Case 2. When the growth condition in g is exponential, we replace the term
(1 + t)−(1+γ)(1−θ0) by e−γ(1−θ0), which is integrable too, and then the same
conclusion holds.

Step 3. We now prove the estimate of convergence rate.
Case 1. (Polynomial decay) Let θ ∈ (0, 12 ) and g satisfy the polynomial
growth (G1). Noting that, inequality (3.8) and (3.17) still hold if we replace θ0
by  Lojasiewicz exponent θ. It follows from (3.17) and Young’s inequality that
(3.21)

[Γ(t)−E(ϕ)]2(1−θ) ≤ C{(∥∇ut∥2 + ∥−∆u+ f(x, u)∥∗)2 + (1 + t)−2(1+γ)(1−θ)},
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for all t > T. Using (3.8) and (3.21) to obtain

(3.22)
d

dt
[Γ(t) − E(ϕ)] + C4[Γ(t) − E(ϕ)]2(1−θ) ≤ C(1 + t)−2(1+γ)(1−θ),

for some constant C4 > 0.
Then by Lemma 2.5 we see that for all t > T,

(3.23) [Γ(t) − E(ϕ)] ≤ C(1 + t)−m,

where

m = inf{ 1

1 − 2θ
, 1 + γ}.

On the other hand, we can derive from (3.8) that

− d

dt
[Γ(t) − E(ϕ)] ≥ C∥∇ut∥22.

Integrating the inequality above over (t, 2t)(t > T ), we can deduce

(3.24)

∫ 2t

t

∥∇uτ (τ)∥22dτ ≤ C(1 + t)−m.

Note that for every t ∈ R+, Hölder’s inequality implies

(3.25)

∫ 2t

t

∥∇uτ (τ)∥2dτ ≤ t
1
2

∫ 2t

t

∥∇uτ (τ)∥22dτ.

Combining (3.24) and (3.25), we can get∫ 2t

t

∥∇uτ (τ)∥2dτ ≤ C(1 + t)
1−m

2 ,

for every t > T. Therefore we obtain for every t > T ,∫ ∞

t

∥∇uτ (τ)∥2dτ ≤
∞∑
i=0

∫ 2i+1t

2it

∥∇uτ (τ)∥2dτ ≤ C(2it)
1−m

2 ≤ C(1 + t)
1−m

2 .

Then,for all t > T,

∥u(t̄) − ϕ∥H1
0 (Ω) ≤ C

∫ ∞

t

∥∇uτ (τ)∥2dτ ≤ C(1 + t)−χ,

where

χ = inf{ θ

1 − 2θ
,
γ

2
}.

Case 2. (Exponential decay) Suppose that θ = 1
2 and g satisfies the expo-

nential growth (G2). Then (3.22) becomes

d

dt
[Γ(t) − E(ϕ)] ≤ −C5[Γ(t) − E(ϕ)] + C6e

−γt,

where C5 = 1
C4

and C4 can be chosen large enough to ensure that C5 < γ.
Now, let

Λ(t) = Γ(t) − E(ϕ) − C6e
−C5t

∫ t

0

e−(γ−C5)τdτ.
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Then

d

dt
Λ(t) =

d

dt
[Γ(t) − E(ϕ)] − C6e

−γt + C5C6e
−C5t

∫ t

0

e−(γ−C5)τdτ

≤ d

dt
[Γ(t) − E(ϕ)] + C5C6e

−C5t

∫ t

0

e−(γ−C5)τdτ

= −C5Λ(t).

This yields
Λ(t) ≤ e−C5t,

and therefore

(3.26) Γ(t) − E(ϕ) ≤ e−C5t{1 + C6

∫ t

0

e−(γ−C5)τdτ} ≤ Ce−C5t.

On the other hand, from the inequality (3.19) (when g satisfies the expo-
nential growth and θ0 = θ = 1

2 ), we have for every t > T ,

− d

dt
[Γ(t) − E(ϕ)]

1
2 + Ce−

γt
2 ≥ C∥∇ut∥2.

Integrating this inequality over the interval [t,∞)(t > T ), we obtain

∥u(t) − ϕ∥H1
0 (Ω) ≤ C

∫ ∞

t

∥∇uτ (τ)∥2dτ ≤ [Γ(t) − E(ϕ)]
1
2 + Ce−

γt
2 .

This inequality together with the inequality (3.26) imply the claim.

3.2. The case of positive-negative

We begin with the definition of positive-negative.

Definition 3.5. Assume that {In}n∈N is a sequence of disjoint interval in
(0,∞), In = (an, bn), where a1 = 0, bn = an+1 and an → ∞ as n → ∞. If
k : [0,+∞) → R satisfies: for all t ∈ In, there exists 0 < mn ≤ Mn < ∞ such
that

mn ≤ k(t) ≤Mn,

we call k(t) is in the positive-negative case.

Remark 3.6. Noting that this kind of intermitting damping may change
sign at the discontinuous points. If all the discontinuous points k(bn) = 0, we
call this damping is in on-off case.

Using the same method, we can get the convergence to equilibrium theorem
when k1(t), k2(t) are positive-negative.

Theorem 3.7. Suppose that k1(t), k2(t) are positive-negative, nonlinear
functions h and f satisfy (H) and (F1)-(F3), respectively. Furthermore, assume
that g satisfies (G1) or (G2). Let u be a global solution of problem (1.1)-(1.3)
and assume also that

(T1) (u, ut) is bounded in H1
0 (Ω) ×H1

0 (Ω);
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(T2) {u(t) : t ≥ 0} is relatively compact in H1
0 (Ω).

Then there exists ϕ ∈ Σ such that

∥ut(t)∥H1
0 (Ω) + ∥u(t) − ϕ∥H1

0 (Ω) → 0,

as t → ∞. Moreover, let θ = θϕ ∈ (0, 12 ] be the  Lojasiewicz exponent of E at
ϕ. Then the following assertions holds.

(i) If 0 < θ < 1
2 and g satisfies the polynomial growth (G1), then we have

∥u(t) − ϕ∥H1
0 (Ω) = o((1 + t)−χ), t→ ∞,

where

χ =

{
inf{ θ

1−2θ ,
γ
2 }, if g ̸= 0,

θ
1−2θ , if g = 0.

(ii) If θ = 1
2 and g satisfies the exponential growth (G2), then we have

∥u(t) − ϕ∥H1
0 (Ω) = o(e−ζt), t→ ∞,

where ζ > 0.

Proof. The proof is similar to Theorem 3.3, so we omit it.

3.3. Boundedness of global solutions

In this subsection, we present the boundedness of global solutions to problem
(1.1)-(1.3), under the assumption (F4). We give the proof of proposition 2.4 as
follows.

Proof. Setting Θ to be the function provided by (3.1), which is nonincreasing
by (3.2). Based on the condition (F3), we can see

|
∫
Ω

F (x, u0)dx| ≤ C(1 + ∥∇u0∥µ+2
2 ),

where C ≥ 0 is a constant depending on the constant in (F3), the measure of
Ω and the constant of the embedding H1

0 (Ω) ↪→ Lµ+2(Ω). According to the
inequality above and the definition of Θ, there exists a constant C7 ≥ 0 such
that

(3.27) Θ(0) ≤ C7(1 + ∥∇u0∥22 + ∥∇u1∥22 + ∥∇u0∥µ+2
2 ).

On the other hand, it follows the definition of E and the condition (F4)
that there exist positive constants C8 and C9 such that

(3.28) ∥∇u(t)∥22 + ∥∇ut(t)∥22 ≤ C8Θ(t) + C9.

Combining (3.27), (3.28) and using the nonincreasing property of E, we can
derive the result.
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