• Title/Summary/Keyword: Damping Layer

Search Result 268, Processing Time 0.02 seconds

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.

Relation Between Welding Shapes and the Vibration Energy Flows of Steel Plate (강판의 용접형상과 진동에너지의 변화에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In the structures of automobiles and ships which have engines for works, the vibration energies generated by the engines are transferred to dissipation parts through the structures which is welded and bolted with beams and plates. The vibration energies generated by resonance frequencies are the reasons of the resonance phenomena. To solve these problems, up to the present, we have studied to avoid the resonance, and add the higher damping characteristics. However, we need to understand the structural energy flows, to design the structures clearly which have the characteristic of welding. The object of this study is to make differences clear in the characteristics of structures which have some welded part on an homogenous flat plate. In this investigation, we study the flows of structural vibration energy experimently, and then, some knowledge for dynamic structural design is obtained.

  • PDF

Hybrid Damping Treatment for Vibration control of an Automotive Roof using Viscoelastic and Piezoelectric material (하이브리드 방법을 이용한 자동차 루프의 진동제어)

  • Na, Jung-Kee;Moon, Sung-Jin;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.994-998
    • /
    • 2004
  • Hybrid method is used to suppress vibration of an automotive roof surface. The hybrid method proposed in this paper is implemented experimentally using both viscoelastic and piezoelectric material. The piezoelectric material is used to control the vibration of automotive structure for lower range of frequencies and the experiment of vibration control using viscoelastic material has been carried out suppress vibrations of high frequency range mark. At first the plate controlled by using hybrid method has been .implemented to verify the performance for suppressing vibration. Then the experiment has been applied to the automotive roof structure.

  • PDF

Experimental Evaluation for Structural Performance of Hybrid Damper Combining Steel Slit and Rotational Friction Damper (강재 슬릿과 회전 마찰형 감쇠 장치를 결합한 복합 감쇠 장치의 실험적 구조 성능 평가)

  • Kim, Yu-Seong;Kang, Joo-Won;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.101-109
    • /
    • 2019
  • In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

A Study on Dynamic Characteristics of Single Lap Joints with Different Joining Methods (체결방법에 따른 랩조인트의 동특성 해석)

  • Jung, Y.D.;Park, M.K.;Bahk, S.M.;Choi, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.624-629
    • /
    • 2001
  • Two types of bolted lap joints, one with a viscoelastic layer and the other without the viscoelastic layer were chosen to analyze the dynamic characteristics of the joints with the mechanical properties of the bolts of the joints being taken as computational variables. The finite element method was used along with the impact hammer technique to verify the FEM model. The results in the bolted lap joints reveal that the higher the Young's Modulus for the bolts are the higher the natural frequencies results for the joints. However, the natural frequency differences in the first and second mode are not substantial but become noticeable in the higher modes. Lower natural frequencies were obtained for the bolted lap joints with the viscoelastic layer when compared with those of the bolted lap joints without the viscoelastic layer. And the differences in the natural frequencies for the two types of joints are relatively small in the first and second mode whereas in the higher mode the differences become significant. The loss factors were observed to be significant especially in the second mode for the bolted lap joints with the viscoelastic layer.

  • PDF

Measurement of the Slider-Disk Contact during Load/Unload process with AE and Electrical Resistance (Load/Unload 시 AE 와 전기저항을 이용한 슬라이더-디스크 충돌측정에 관한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Lim, Soo-Cheol;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.160-166
    • /
    • 2007
  • In this paper, the measured electrical resistance method is proposed to analyze the ramp-tab contact during the load/unload (L/UL) process. Since this method supplies the voltage change due to the resistance change, we can easily and conveniently identify the ramp-tab contact from the acoustic emission (AE) signal. At first, we carefully deposit the conductive material on the surface of the conventional ramp by sputtering method. The ratio frequency (RF) magnetron co-sputtering system is applied to accomplish the deposited double-layers on the ramp surface. One layer is the stainless steel for the conductive layer and the other is the titanium layer for the cohesive function between the ramp surface and the stainless steel layer. In order to guarantee the stiffness and damping properties of the original ramp, the deposited conductive layer is intended to have very thin thickness. After integration the proposed ramp device into the L/UL system and networking the electrical resistance circuit, the L/UL performance is experimentally evaluated by comparing the measured electrical resistance signal and AE signal.

  • PDF

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF