• Title/Summary/Keyword: Damper Unit

Search Result 65, Processing Time 0.201 seconds

다수의 출구를 가진 선박용 대형 저소음 룸유닛 개발 (Development of shipboard large-sized low-noise room unit with multiple outlets)

  • 김상렬;김현실;이성현;박근효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.600-605
    • /
    • 2012
  • In this paper, the acoustic performance of a shipboard large-sized room unit is studied. The room unit is a kind of rectangular absorptive chamber with a partition whose surface absorptive material with fabric skin is attached to. The room unit has one inlet and three outlet. At the inlet, a plane damper is installed to control the flow rate. The acoustic performance of a prototype room unit is measured using a HVAC mock-up. It is shown that its insertion loss is comparable with that of a commercially-used room unit but the developed room unit generates flow noise higher than the other one. The major source of flow noise is analyzed by NADS-R, the noise analysis program for room unit. Cone-shaped dampers are proposed to be used as the damper of a room unit to reduce flow noise. It is shown that the cone-shaped damper decrease flow noise remarkably.

  • PDF

다수의 출구를 가진 선박용 대형 저소음 룸유닛 개발 (Development of Shipboard Large-sized Low-noise Room Unit with Multiple Outlets)

  • 김상렬;김현실;이성현;박근효
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.468-473
    • /
    • 2012
  • In this paper, the acoustic performance of a shipboard large-sized room unit is studied. The room unit is a kind of rectangular absorptive chamber with a partition whose surface absorptive material with fabric skin is attached to. The room unit has one inlet and three outlets. At the inlet, a plane damper is installed to control the flow rate. The acoustic performance of a prototype room unit is measured using a HVAC mock-up. It is shown that its insertion loss is comparable with that of a commercially-used room unit but the developed room unit generates flow noise higher than the other one. The major source of flow noise is analyzed by NADS-R, the noise analysis program for room unit. Cone-shaped dampers are proposed to be used as the damper of a room unit to reduce flow noise. It is shown that the cone-shaped damper decrease flow noise remarkably.

Optimal placement of viscoelastic dampers and supporting members under variable critical excitations

  • Fujita, Kohei;Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.43-67
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of both the added dampers and their supporting members to minimize an objective function of a linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of the optimal damper placement. Two different models of the entire damper unit are investigated. The first model is a detailed model referred to as "the 3N model" where the relative displacement in each component (i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model referred to as "the N model" where the entire damper unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to investigate the characters of the optimal design using these models and to examine the validity of the proposed technique.

Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Lee, Jin-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.262-271
    • /
    • 2004
  • Hydropneumatic suspension unit is an important part of tracked vehicles to absorb external impact load exerted from the non-paved road and the cannon discharge. Its absorption performance is strongly influenced by both damping and spring forces of the unit. In this paper, we numerically analyze the damping characteristics of the in-arm-type hydropneumatic suspension unit (ISU) by considering four distinct dynamic modes of the ISU damper: jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. The flow rate coefficients determining the oil flow rate through the damper orifice are decided with the help of independent experiments. The wheel reaction force, the flow rate at cracking and the damping energy are parametrically investigated with respect to the orifice diameter and the wheel motion frequency.

Floated Wafer Motion Modeling of Clean Tube system

  • Shin, Dong-Hun;Yun, Chung-Yong;Jeong, Kyoo-Sik;Choi, Chul-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1264-1268
    • /
    • 2004
  • This paper presents a wafer motion modeling of the transfer unit and the control unit in the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. The motion in the transfer unit is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated plate is modeled as a linear spring. The motion in the control unit is also modeled as another mass-spring-damper system, but in two dimensional systems. Experiments with a clean tube system built for 12-inch wafers show the validity of the presented force and motion models.

  • PDF

원자력발전소 비상디젤발전기의 가동중 진동저감 효과 (Operating Vibration Reduction Effect Evaluation of EDG at the NPP Site)

  • 김민규;전영선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 2006
  • The Emergency Diesel Generator(EDG) is a very important piece of equipment for the safety of a Nuclear Power Plant(NPP). In this study, the operating vibration or three kinds or EDG system was measured. The target EDG systems art Yonggwang 5 unit, Ulchin 2 unit and Ulchin 3 unit. The Yonggwang 5 and Ulchin 3 unit EDG system is the same type but the foundation systems are different. One is an anchor bolt type and the other is a spring and viscous-damper type. The purpose of this measurement is for a verification of the vibration isolation effect according to the foundation system. As a result. it can he said that the spring and viscous damper system of the EDG performed well for the vibration isolation.

  • PDF

자기점성유체 댐퍼의 자기장 및 유동 해석에 따른 성능비교 (Comparison of Performances refer to Magnetic and Fluid Analysis of Magneto-Rheological Flow Damper)

  • 송준한;손성완;이규섭;전종균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.98-102
    • /
    • 2009
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. To manufacture the magneto-rheological fluid damper that uses such characteristics of the fluid, a flow analysis of the inner damper was conducted to forecast the damper's capacity. In addition, using the finite element method software, analysis on the characteristics of electromagnetic field around the coil operation unit inside the damper. Based on the result of the analysis, a single core damper and a double core damper were built and tested for their dynamic function. Based on the result of the experiment, the propriety of the flow analysis was demonstrated, and the proposed model was verified.

  • PDF

회전형 Friction Damper의 거동 특성 연구 (Performance of Rotational Friction Dampers Under earthquake excitation)

  • 배춘희;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.810-813
    • /
    • 2004
  • A study on the dynamic response of single-storey steel frames equipped with a rotational friction damper is presented. Extensive testing was carried out for assessing the friction pad material, damper unit performance and foaled model frame response to lateral harmonics excitation. Numerical simulations based on non-linear time history analysis were used to evaluate the seismic behaviour of steel frames with rotational frictional damper. It Is demonstrated that using discrete friction dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF

원형 단면 구멍 표면을 갖는 댐퍼 후로팅 링 실의 누설량 및 회전체 동역학적 특성 해석 (Leakage and Rotordynamic Analysis of Damper Floating Ring Seal with Round­Hole Surfaces in the High Pressure Turbo Pump)

  • 하태웅;이용복;김창호
    • Tribology and Lubricants
    • /
    • 제19권6호
    • /
    • pp.349-356
    • /
    • 2003
  • A damper floating ring seal with round hole pattern surfaces is suggested for better leakage control. The flat plate test of the round hole pattern surfaces has been performed to yield an empirical friction factor model. The exact predictions of the lock­up position of the damper floating ring, the leakage performance, and the rotordynamic coefficients of the seal are necessary to evaluate the rotordynamic performance of the turbo pump unit. The governing equations including the empirical friction factor model for round hole pattern surfaces are solved by the Fast Fourier Transform method. The lock­up position, leakage flow rate, and rotordynamic coefficients are evaluated according to the geometric parameters of the damper floating ring seal. Theoretical results show that the damper floating ring seals yield less leakage and better rotordynamic stability than the floating ring seal with a smooth surface.

Incorporating magneto-Rheological damper into riser tensioner system to restrict riser stroke in moderate-size semisubmersibles

  • Zainuddin, Zaid;Kim, Moo-Hyun;Kang, Heon-Yong;Bhat, Shankar
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.101-118
    • /
    • 2018
  • In case of conventional shallow-draft semisubmersibles, unacceptably large riser stroke was the restricting factor for dry-tree-riser-semisubmersible development. Many attempts to address this issue have focused on using larger draft and size with extra heave-damping plates, which results in a huge cost increase. The objective of this paper is to investigate an alternative solution by improving riser systems through the implementation of a magneto-rheological damper (MR Damper) so that it can be used with moderate-size/draft semisubmersibles. In this regard, MR-damper riser systems and connections are numerically modeled so that they can couple with hull-mooring time-domain simulations. The simulation results show that the moderate-size semisubmersible with MR damper system can be used with conventional dry-tree pneumatic tensioners by effectively reducing stroke-distance even in the most severe (1000-yr) storm environments. Furthermore, the damping level of the MR damper can be controlled to best fit target cases by changing input electric currents. The reduction in stroke allows smaller topside deck spacing, which in turn leads to smaller deck and hull. As the penalty of reducing riser stroke by MR damper, the force on the MR-damper can significantly be increased, which requires applying optimal electric currents.