• 제목/요약/키워드: Damper Design

검색결과 819건 처리시간 0.026초

해양플랜트용 H-120 등급 방화 댐퍼의 성능 실험 (Performance Experiment of H-120 Class Fire Damper for Offshore)

  • 박창수
    • 한국산업융합학회 논문집
    • /
    • 제20권5호
    • /
    • pp.425-430
    • /
    • 2017
  • This study propose CAE analysis of fire damper and design of the damper control system. Through the design of the damper system for ANSYS-CFX heat transfer. As a result of the analysis, continuance equation of the damper control. Climate system. Finaily, We have obtained a fire damper solution by using orthogonal array. The fire damper of the set of fixture and alveolus are made by using a CAE software. Also, the optimum design offshore structures. The new H-120 class fire damper was designed. In the near future, fire resistance test was carried out to obtain class H-120 thermal insulation of fire dampers according to a hydrocarbon fire conditions. The test results showed that the insulation of the damper blade was an important factor in the fireproof performance of fire dampers concerning the coaming length minimum 500mm on the unexposed side as specified test standard.

해양플랜트용 H-120급 방화 댐퍼의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of H-120 Class Fire Damper for Offshore Structures)

  • 장성철;이종환;이치우
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.19-24
    • /
    • 2014
  • This research conducts CAE analysis of fire damper and design of damper controlling system. The prediction of the design heat transfer was done the answer of fire damper could be obtained by using continuity equation of damper controlling and orthogonal array. Through the design analysis of optimal offshore construction, new fire damper of H-120 class was designed. Accordingly, this equipment will be tested in actual offshore construction. Finally, we could obtain fire damper of optimal design with orthogonal array. With the CAE results of this research, The offshore plant will obtain eco-friendly fire damper with a method to select optimal condition of fire damper with orthogonal array.

스프링-점성형 비틀림 진동댐퍼 설계 및 성능 평가에 관한 연구 (Design and Performance Evaluation of Spring-viscous Damper for Torsional Vibration)

  • 이동환;정태영;김영철;김흥섭
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1192-1198
    • /
    • 2011
  • Design routines of a torsional spring-viscous damper for a 1800 kW four cycle diesel engine-generator system are described. Modal techniques for system normalization and optimal equations for damper design are used to obtain proper design parameters of the damper. A prototype damper is manufactured according to the described design process and its two design parameters, stiffness and damping, are evaluated experimentally by torsional actuator test and free decay test. Experimentally obtained values of stiffness and damping coefficients showed good agreements with the designed values of the prototype damper.

최적화를 통한 토크 컨버터 댐퍼 스프링 설계 자동화에 관한 연구 (Design Automization for Torque Converter Damper Spring Using Optimization)

  • 박병건;황길언;김재정;장재덕
    • 한국CDE학회논문집
    • /
    • 제12권3호
    • /
    • pp.163-170
    • /
    • 2007
  • A torque converter, connected to a transmission/transaxle input shaft, connects, multiplies and interrupts the flow of engine torque into the transmission. Damper springs are usually equipped in a torque converter to convert stably the torque power supplied from engine. Damper Springs generally have the most flexible design variables among vehicle transmission parts, so that they could be effective design factors to improve the entire vehicle's performance. Damper spring, however, has geometric complexity after it equipped in a torque converter. For that reason, modeling a damper spring requires expert's knowledge to determine many design parameters and satisfy the functional requirements at the same time. In this paper, we introduce an optimum design method applied in detailed-design stage to reduce design process and financial loss caused by adequate design. Many design variables have to be classified and structuralized for Optimization. This also could make designer concentrate on functional requirements of damper spring, not on design possibility. In addition, modeling an assembled spring has technical restriction with primitives of the current major CAD solutions because of complexity of assembled spring shape. Thus, one of modeling solution presented in this paper since detailed and exact modeling is important for CAE or DMU.

오리피스 유체댐퍼의 수치해석적 설계 (Numerically Analytical Design of An Orifice Fluid Damper)

  • 이재천;김성훈;문석준
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.

스톡브리지 댐퍼 설계 파라미터 선정 (Determination of Design Parameters of Stockbridge Damper)

  • 김찬중
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.814-819
    • /
    • 2016
  • The Stockbridge damper is used to control the aeolian vibration of a overhead transmission line due to the natural wind under a low velocity, between 1 m/s to 7 m/s. The damper model can be simply derived with several design parameters and the location of eigenvalues of design parameters are important to determine the efficiency of energy dissipation by excitation itself with two counterweights. First, the importance of resonance frequencies of Stockbridge damper was reviewed through the analysis of frequency response function of damper system. Then, the best selection of design parameters was investigated with the introduction of objected function that minimize the distance between the calculated eigenvalues and target frequency points. The best choice of design parameters was reviewed using the simulated results from the objective function and the effectiveness of selected design case was discussed at the point view of practical implementation.

유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구 (A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수 (Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper)

  • 민경원
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

자동클램핑 장치형 Spacer Damper 설계 (Design of the Spacer Damper with Automatic Clamping Device for Transmission Line)

  • 박종범;안용호;윤기갑;김광우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1790-1795
    • /
    • 2000
  • 송전선로에 새로운 Spacer damper를 설계하는데 이 논문의 목적이며, 이 설계되는 새로운 Spacer damper는 매우 중요한 특징과 장점을 가지고 있다. 또한, 최근 Spacer damper의 문제가 프랑스, 일본 등 다른 나라에서도 자동화 시스템과 함께 많이 발전되어 왔다. 개발된 Spacer damper외 설치는 특별한 기기없이 설치가능하며, 최근 자동 클램핑 장치 이용한 Spacer damper가 도입되어 피로 파괴와 미풍진동에 매우 효과적임이 입증되었고 보수유지가 거의 필요없으므로 경제성도 높으나 고가의 수입가격으로 인해 국산화의 필요성이 절실하다.

  • PDF

Development of tension estimation method without damper modeling error for cable with damper

  • Aiko Furukawa;Yuma Sugimachi;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.127-148
    • /
    • 2024
  • Estimating cable tension is important in the maintenance of cable structures, such as cable-stayed bridges. In practice, the higher-order vibration method based on natural frequencies is used. In recent years, dampers have been installed onto cables to suppress aerodynamic vibration. Because the higher-order vibration method is suitable to cables without a damper, the damper must be removed before using this method. Because damper removal is time-consuming and labor-intensive, a previous study proposed a tension estimation method for a cable with a damper based on the natural frequencies, which does not require the damper's removal. However, the previous method relies on the modeling accuracy of the damper's complex stiffness. The damper design formula, while intended for design purposes, does not consistently reflect the damper's actual complex stiffness. Therefore, the estimation accuracy deteriorates when the damper's actual complex stiffness deviates from the damper design formula. With this background, this paper introduces a novel tension estimation method based on mode shapes, which circumvents damper modeling errors since mode shapes are independent of the damper's complex stiffness. In the numerical verification using 90 models, the proposed method estimated tension accurately with an estimation error within 0.59%. In the experimental verification, the proposed method estimated tension accurately with an estimation error within 4.17% except for one case, while the previous method had an estimation error of 44% when the damper design formula was used. The proposed method was found to be superior to the previous method in terms of accuracy and practicality by numerical simulation and experiment.