• Title/Summary/Keyword: Damaged zone

Search Result 215, Processing Time 0.029 seconds

Study on the Occurrence of Tunnel Damage when a Large-scale Fault Zone Exists at the Top and Bottom of a Tunnel (대규모 단층대가 터널 상하부에 존재하는 조건에서 터널 변상 사례 연구)

  • Jeongyong Lee;Seungho Lee;Nagyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, along with the improvement of high-speed rail and road design speed, the proportion of tunnel construction work is increasing proportionally. In particular, the construction of long tunnels is rapidly increasing due to the mountainous terrain of our country. In this way, due to the trend of tunnels becoming longer, it is difficult to design and construct tunnels by avoiding fault zones. In the case of tunnel construction in mountainous areas, ground investigation is often difficult even during design due to the topographical conditions, making precise ground investigation difficult, and as a result, the upper part of the tunnel is damaged during tunnel construction. When fault zones, which are vulnerable to weathering, exist, the stability of the tunnel during excavation is directly affected by the fault zone distribution, strength characteristics, and groundwater distribution range. In particular, when a fault zone is distributed in the upper part of a tunnel, damage such as tunnel collapse and excessive displacement may occur, and in order to prevent this in advance, countermeasures must be established through analysis of similar cases. Therefore, in this study, when a large-scale fault zone exists in the upper part of a tunnel, the relationship and characteristics of damage to the tunnel structure were analyzed.

A Study on the Status and Performance of Cultural Heritage in the Demilitarized Zone on the Korean Peninsula (한반도 비무장지대 문화유산의 실태조사 현황과 성과 고찰)

  • HWANGBO Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.28-50
    • /
    • 2024
  • A fact-finding survey of the Demilitarized Zone can be said to be a very meaningful academic survey linked to previous index surveys of protected military areas and municipal and excavation surveys of ruins and military sites on Mount Dora. Not a few ruins were first discovered in this survey, and the locations, structures, and restoration artifacts of the previously investigated ruins were confirmed differently, raising the need for a detailed investigation. In particular, it is noteworthy that various relics from the Paleolithic Age to the Joseon Dynasty were recovered from relics dispersion sites such as Josan-ri and Cheorwon Gangseo-ri in Paju, and Hoengsan-ri Temple Site is also a Buddhist relic in the Demilitarized Zone. However, in the case of some graveyards and relics sites in the Paju region, it was an opportunity to understand the reality that they are not safe from cultivation and development, and the ruins of Cheorwon Capital Castle, Seongsanseong Fortress, Jorangjin Bastion, and Gangseo-ri Bastion were damaged during the construction of military facilities, and an urgent investigation is needed. Also, farmland and hilly areas around the ruins of Jangdan, Gunnae-myeon, and Gangsan-ri have not been properly investigated for buried cultural assets due to small-scale development. Therefore, it is an important time for the relevant authorities and agencies to cooperate more closely to establish special management and medium- to long-term investigation measures for the cultural heritage in the Demilitarized Zone based on the results of this fact-finding investigation.

Rapid Structural Safety Evaluation Method of Buildings using Unmanned Aerial Vehicle (SMART SKY EYE) (무인비행체를 이용한 건축물의 긴급 위험도 평가 기술 (SMART SKY EYE) 개발)

  • Jeong, Dong-Min;Lee, Jong-Hoon;Lee, Da-Hye;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.3-11
    • /
    • 2019
  • The recent earthquake of Pohang (M5.4) and the Gyeongju earthquake (M5.8) suggested the possibility of a strong earthquake in Korea and reminded us that the Korea is no longer an earthquake-safe zone. In the disaster recovery stage in a disaster like an earthquake, the investigation of the damage situation and the safety assessment of the building serve to provide important information for the initial action such as establishment of the recovery strategy and rescue of the survivor. However, the research that depends on manpower can not cope with the difficulty of processing a large number of doses in a short time, and the expertise of the manpower must be taken into consideration, which may result in delayed initial action. In this study, we propose an rapid safety evaluation technique of building using unmanned aerial vehicle which evaluates the performance and safety of buildings by integrating conventional safety inspection method with unmanned aerial vehicle technology and developed evaluation method of each evaluation factor. In order to verify this, the buildings damaged by the earthquake in Pohang were checked and compared using this system. The results are consistent with the results of the existing emergency earthquake risk assessment. As a result, the possibility of checking the emergency safety using the unmanned aerial vehicle for the damaged structures in case of a large-scale disaster such as an earthquake was confirmed.

Strengthening of prestressed girder-deck system with partially debonding strand by the use of CFRP or steel plates: Analytical investigation

  • Haoran Ni;Riliang Li;Riyad S. Aboutaha
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This paper describes an in-depth analysis on flexural strength of a girder-deck system experiencing a strand debonding damage with various strengthening systems, based on finite element software ABAQUS. A detailed finite element analysis (FEA) model was developed and verified against the relevant experimental data performed by other researchers. The proposed analytical model showed a good agreement with experimental data. Based on the verified FE model, over a hundred girder-deck systems were investigated with the consideration of following variables: 1) debonding level, 2) span-to-depth ratio (L/d), 3) strengthening type, 4) strengthening material thickness. Based on the data above, a new detailed analytical model was developed and proposed for estimating residual flexural strength of the strand-debonding damaged girder-deck system with strengthening systems. It was demonstrated that both finite element model and analysis model could be used to predict flexural behaviors for debonding damaged prestressed girder-deck systems. Since the strands are debonding from surrounding concrete over a certain zone over the length of the beam, the increase of strain in strands can be linked with a ratio ψ, which is Lp/c. The analytical model was proposed and developed regarding the ratio ψ. By conducting procedure of calculating ψ, the ψ value varies from 9.3 to 70.1. Multiple nonlinear regression analysis was performed in Software IBM SPSS Statistics 27.0.1 to derive equation of ψ. ψ equation was curved to be an exponential function, and the independent variable (X) is a linear function in terms of three variables of debonding level (λ), span length (L), and amount of strengthening material (As). The coefficient of determinate (R2) for curve fitting in nonlinear regression analysis is 0.8768. The developed analytical model was compared to the ultimate capacities computed by FEA model.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

A Study on the Utilization of Biotope Map in Urban Planning - Focusing on the land use designation and planned urbanized area - (도시계획 수립에 있어 도시생태현황지도 활용방안 연구 - 용도지역과 시가화예정용지를 중심으로 -)

  • Kwon, Jeon-O;Park, Seok-Cheol;Baek, Seung-A
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.31-46
    • /
    • 2021
  • In South Korea, there is a growing domestic need for a biotope map which contains ecological and environmental geographic information of a city. After the production of a Urban Ecological Maps(biotope map) by the Seoul metropolitan government in 2000, Natural Environment Conservation Act was revised in 2017 to make it mandatory for a local government to draw up its own urban ecological map. The aim of the present study was to find out ways to utilize an urban ecological map as a mean of communication between natural environment planning and urban planning sectors in a preliminary stage before introducing a big framework of 'environmental and ecological planning.' The northern area of Incheon metropolitan city was selected as the target area for this study. The major research content includes a comparative analysis of special-purpose zones, urban planning zones, restricted development zones, and conservation forests with focus on biotope types and Grades 1 of 'Biotope Type Assessment.' Farmland biotopes and forest biotopes within an area designated as an urban zone (residential, commercial and industrial zones) need to be redesignated as a zone which can conserve them. Especially considering a high possibility of damage to a large scale of natural green areas, these areas need to be readjusted immediately. If the entire area designated as an urban planning zone is to be developed, it is likely to cause serious damage to natural biotopes in the area (56.2%), including farmland biotope (30.4%), forest biotope (15.0%) and grassland biotope (10.8%), and thus, readjustment is needed. In case of a conservation forest, as it can possibly be damaged by the designation of special-purpose zones, it is necessary to match the designation of conservation forests or a special-purpose zones with their biotope types. In conclusion, we present a variety of thematic maps for utilization of an urban ecological map and propose a phase-specific environmental and ecological plan. Phase 1 is the establishment of a urban plan in consideration of ecological status; Phase 2 is the independent establishment of an environmental and ecological plan by an environment department; Phase 3 is an integrated management of ecological planning system and urban planning system.

Shear Strength Model for Slab-Column Connections (슬래브-기둥 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun;Kim, Hye-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • On the basis of the strain-based shear strength model developed in the previous study, a strength model was developed to predict the direct punching shear capacity and unbalanced moment-carrying capacity of interior and exterior slab-column connections. Since the connections are severely damaged by flexural cracking, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the compressive normal stress developed by the flexural moment, the shear strength of the compression zone was derived on the basis of the material failure criteria of concrete subjected to multiple stresses. As a result, shear capacity of the critical section was defined according to the degree of flexural damage. Since the exterior slab-column connections have unsymmertical critical sections, the unbalanced moment-carrying capacity was defined according to the direction of unbalanced moment. The proposed strength model was applied to existing test specimens. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods.

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

Clinical Experience of Finger Tip Amputation of Small Finger in 12-Months-Old: Use of the Technique of Artery-Only Anastomosis (단일동맥연결을 통한 유아 새끼 손가락끝 재접합 경험)

  • Kim, Sun-Joo;Choi, Hwan-Jun;Lee, Young-Man;Kim, Yong-Bae
    • Archives of Reconstructive Microsurgery
    • /
    • v.18 no.1
    • /
    • pp.27-30
    • /
    • 2009
  • Purpose: Recently, replantation of fingertip amputation, Zone I by Yamano classification, is still difficult because digital arteries branch into small arteries and also digital veins are hard to separate from the immobile soft tissue. However the replantation of fingertip in adults is a well-established procedure, but the replantation in infant or child is still uncommon. Therefore we present one case of replantation of the fingertip of the small finger in 12-months-old patient. Methods: We experienced a 12-months-old male amputation of small finger. It had been amputated completely at the level of Zone I by Yamano classification. Replantation was performed using the arteryonly technique with neither vein nor nerve repair. Because the artery has been damaged, it is still possible to make a direct suture by transposing the arterial arch in an inverted Y to I arterial configuration. Venous drainage was provided by an external bleeding method with partial nail excision and repaired margin for approximately 7 days. Results: We were performed replantation in infant with only-arterial anastomosis successfully, result in good recovery of aesthetic and functional outcome. Conclusion: In conclusion, although fingertip injury was difficult to replantation in infant and child, we must try it. Because of its functional and cosmetic advantage.

  • PDF