• Title/Summary/Keyword: Damage sensing

Search Result 414, Processing Time 0.022 seconds

A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images (Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구)

  • Gumsung Cheon;Kwangil Cheon;Byung Bae Park
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.463-472
    • /
    • 2023
  • The amount of damage and the area of damage to forest fires are increasing globally, and the effectiveness analysis of the restoration method after the damage is performed insufficient. This study calculated the area of forest fire damage was calculated using Sentinel-2B satellite images and stack map and the intensity of forest fire damage is analyzed according to the forest type. In addition, the vegetation index was calculated using various wavelength bands. Based on the results, the vegetation resilience by the restoration method was quantitatively. As results, areas with a high proportion of coniferous forests suffered high intensity forest fire damage, and areas with a relatively high ratio of mixed and broad-leaved forests tended to have low forest fire damage. Also, artificial forests showed a recovery of about 92.7% compared to before forest fires and natural forests showed a recovery of about 99.6% from the result of analyzing vegetation resilience in artificial and natural forests after forest fires. Accordingly, it was confirmed that natural forests after forest fire damage had superior vegetation resilience compared to artificial forests. It can be proposed that this study is meaningful in providing important information for efficiently restoring the affected target site and the selection criteria for trees to reduce forest fire damage through the evaluation of vegetation resilience by the intensity of forest fire damage and restoration methods.

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

Change Detection of Building Demolition Area Using UAV (UAV를 활용한 건물철거 지역 변화탐지)

  • Shin, Dongyoon;Kim, Taeheon;Han, Youkyung;Kim, Seongsam;Park, Jesung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.819-829
    • /
    • 2019
  • In the disaster of collapse, an immediate response is needed to prevent the damage from worsening, and damage area calculation, response and recovery plan should be established. This requires accurate detection of the damage affected area. This study performed the detection of the damaged area by using UAV which can respond quickly and in real-time to detect the collapse accident. The study area was selected as B-05 housing redevelopment area in Jung-gu, Ulsan, where the demolition of houses and apartments in progress as the redevelopment project began. This area resembles a collapsed state of the building, which clear changes before and after the demolition. UAV images were acquired on May 17 and July 9, 2019, respectively. The changing area was considered as the damaged area before and after the collapse of the building, and the changing area was detected using CVA (Change Vector Analysis) the Representative Change Detection Technique, and SLIC (Simple Linear Iterative Clustering) based superpixel algorithm. In order to accurately perform the detection of the damaged area, the uninterested area (vegetation) was firstly removed using ExG (Excess Green), Among the objects that were detected by change, objects that had been falsely detected by area were finally removed by calculating the minimum area. As a result, the accuracy of the detection of damaged areas was 95.39%. In the future, it is expected to be used for various data such as response and recovery measures for collapse accidents and damage calculation.

Forest Fire Area Extraction Method Using VIIRS (VIIRS를 활용한 산불 피해 범위 추출 방법 연구)

  • Chae, Hanseong;Ahn, Jaeseong;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.669-683
    • /
    • 2022
  • The frequency and damage of forest fires have tended to increase over the past 20 years. In order to effectively respond to forest fires, information on forest fire damage should be well managed. However, information on the extent of forest fire damage is not well managed. This study attempted to present a method that extracting information on the area of forest fire in real time and quasi-real-time using visible infrared imaging radiometer suite (VIIRS) images. VIIRS data observing the Korean Peninsula were obtained and visualized at the time of the East Coast forest fire in March 2022. VIIRS images were classified without supervision using iterative self-organizing data analysis (ISODATA) algorithm. The results were reclassified using the relationship between the burned area and the location of the flame to extract the extent of forest fire. The final results were compared with verification and comparison data. As a result of the comparison, in the case of large forest fires, it was found that classifying and extracting VIIRS images was more accurate than estimating them through forest fire occurrence data. This method can be used to create spatial data for forest fire management. Furthermore, if this research method is automated, it is expected that daily forest fire damage monitoring based on VIIRS will be possible.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities (UAV 영상을 활용한 수변구조물의 DSM 생성 및 정확도 분석)

  • Rhee, Sooahm;Kim, Taejung;Kim, Jaein;Kim, Min Chul;Chang, Hwi Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2015
  • If the damage analysis on river-side facilities such as dam, river bank structures and bridges caused by disasters such as typhoon, flood, etc. becomes available, it can be a great help for disaster recovery and decision-making. In this research, We tried to extract a Digital Surface Model (DSM) and analyze the accuracy from Unmanned Air Vehicle (UAV) images on river-side facilities. We tried to apply stereo image-based matching technique, then extracted match results were united with one mosaic DSM. The accuracy was verified compared with a DSM derived from LIDAR data. Overall accuracy was around 3m of absolute and root mean square error. As an analysis result, we confirmed that exterior orientation parameters exerted an influence to DSM accuracy. For more accurate DSM generation, accurate EO parameters are necessary and effective interpolation and post process technique needs to be developed. And the damage analysis simulation with DSM has to be performed in the future.

Utilization Plan Research of High Resolution Images for Efficient River Zone Management (효율적 하천구역관리를 위한 고해상 영상의 활용 방안 연구)

  • Park, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Yun-Won;Jo, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • The river management in Korea had been focused on line based 2D spatial data for the developing river management application system. In this study, the polygon based 3D spatial data such as aerial photos and satellite images were selected and used through comparing their resolution levels for the river environment management. In addition, 1m detailed DEM (Digital Elevation Model) was constructed to implement the real topography information around river so that the damage area scale could be extracted for flood disaster. Also, the social environment thematic maps such as a cadastral map or land cover map could be used to verify the real damage area scale by overlay analysis on aerial photos or satellite images. The construction of these spatial data makes possible to present the real surface information and extract quantitative analysis to support the scientific decision making for establishing the river management policy. For the further study, the lidar surveying data will be considered as the very useful data by offering the real height information of riverbed as the depth of river so that flood simulation can give more reality.

Cloud Detection and Restoration of Landsat-8 using STARFM (재난 모니터링을 위한 Landsat 8호 영상의 구름 탐지 및 복원 연구)

  • Lee, Mi Hee;Cheon, Eun Ji;Eo, Yang Dam
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.861-871
    • /
    • 2019
  • Landsat satellite images have been increasingly used for disaster damage analysis and disaster monitoring because they can be used for periodic and broad observation of disaster damage area. However, periodic disaster monitoring has limitation because of areas having missing data due to clouds as a characteristic of optical satellite images. Therefore, a study needs to be conducted for restoration of missing areas. This study detected and removed clouds and cloud shadows by using the quality assessment (QA) band provided when acquiring Landsat-8 images, and performed image restoration of removed areas through a spatial and temporal adaptive reflectance fusion (STARFM) algorithm. The restored image by the proposed method is compared with the restored image by conventional image restoration method throught MLC method. As a results, the restoration method by STARFM showed an overall accuracy of 89.40%, and it is confirmed that the restoration method is more efficient than the conventional image restoration method. Therefore, the results of this study are expected to increase the utilization of disaster analysis using Landsat satellite images.

Multi-temporal Analysis of High-resolution Satellite Images for Detecting and Monitoring Canopy Decline by Pine Pitch Canker

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.