• Title/Summary/Keyword: Damage frequency

Search Result 1,748, Processing Time 0.025 seconds

Numerical evaluation for vibration-based damage detection in wind turbine tower structure

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.657-675
    • /
    • 2015
  • In this study, the feasibility of vibration-based damage detection methods for the wind turbine tower (WTT) structure is evaluated. First, a frequency-based damage detection (FBDD) is outlined. A damage-localization algorithm is visited to locate damage from changes in natural frequencies. Second, a mode-shape-based damage detection (MBDD) method is outlined. A damage index algorithm is utilized to localize damage from estimating changes in modal strain energies. Third, a finite element (FE) model based on a real WTT is established by using commercial software, Midas FEA. Several damage scenarios are numerically simulated in the FE model of the WTT. Finally, both FBDD and MBDD methods are employed to identify the damage scenarios simulated in the WTT. Damage regions are chosen close to the bolt connection of WTT segments; from there, the stiffness of damage elements are reduced.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Impact of Measurement Temperature on Frequency-Based Damage Detection Method (계측온도조건이 고유진동수 기반 손상검색기법에 미치는 영향)

  • 김정태;윤정방;이진학;류연선;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.535-540
    • /
    • 2003
  • The objective of this paper is to assess the variability of modal properties caused by temperature effects and to adjust modal data used for frequency-based damage detection in plate-girder bridges. First, experiments on model plate-girder bridges are described. Next, the relationship between temperature and natural frequencies is assessed and a set of empirical frequency-correction formula are analyzed for the test structure. Finally, a frequency-based method is used to locate and estimate severity of damage in the test structure using experimental modal data which are adjusted by the frequency-correction formula. Here, local damage in beam-type structures is detected by using measured frequencies and analytical mode shapes.

  • PDF

A new index based on short time fourier transform for damage detection in bridge piers

  • Ahmadi, Hamid Reza;Mahdavi, Navideh;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.447-455
    • /
    • 2021
  • Research on damage detection methods in structures began a few decades ago with the introduction of methods based on structural vibration frequencies, which, of course, continues to this day. The value of important structures, on the one hand, and the countless maintenance costs on the other hand, have led researchers to always try to identify more accurate methods to diagnose damage to structures in the early stages. Among these, one of the most important and widely used methods in damage detection is the use of time-frequency representations. By using time-frequency representations, it is possible to process signals simultaneously in the time and frequency domains. In this research, the Short-Time Fourier transform, a known time-frequency function, has been used to process signals and identify the system. Besides, a new damage index has been introduced to identify damages in concrete piers of bridges. The proposed method has relatively simple calculations. To evaluate the method, the finite element model of an existing concrete bridge was created using as-built details. Based on the results, the method identifies the damages with high accuracy.

Vibration-Based Damage Monitoring in Model Plate-Girder Bridges under Uncertain Temperature Conditions (불확실한 온도 조건하의 모형 강 판형교의 진동기반 손상 모니터링)

  • Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • A vibration-based damage-monitoring scheme is proposed that would generate an alarm showing the occurrence and location of damage under temperature-induced uncertainty conditions. Experiments on a model plate-girder bridge are described, for which a set of modal parameters was measured under uncertain temperature conditions. A damage-alarming model is formulated to statistically identify the occurrence of damage by recognizing the patterns of damage-driven changes in the natural frequencies of the test structure and by distinguishing temperature-induced off-limits. A damage index method based on the concept of modal strain energy is implemented in the test structure to predict the location of damage. In order to adjust for the temperature-induced changes in the natural frequencies that are used for damage detection, a set of empirical frequency correction formulas is analyzed from the relationship between the temperature and frequency ratio.

DNA Damage in Lymphocytes after Hair Dyeing and Related Factors among Women Volunteers (일부 자원 여성에서 모발염색 후 림프구의 DNA손상과 관련 요인)

  • Cho, Jin-A;Oh, Eun-Ha;Sull, Dong-Geun;Lee, Eun-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.4
    • /
    • pp.275-281
    • /
    • 2002
  • Objectives : To evaluate the DNA damage by hair dyeing in human lymphocytes Methods : Comet assays were carried out to evaluate the DNA damage in lymphocytes by hair dyeing. Twenty subjects were selected from women volunteers whose age ranged from 55 to 67 year old. All subjects had no smoking history. Blood samples were collected before and 6 hours after hair dyeing. DNA damage was evaluated by means of the tail moments, which were quantified by a KOMET 4.0 image analysis system. Results : The tail moments before hair dyeing showed no significant differences among subjects except for the high frequency group. The mean values of the tail moments in subjects with low and high frequencies of hair dyeing were 1.39 and 1.77, respectively (p<0.05). The tail moments after hair dyeing increased significantly, The mean values of tail moments in subjects before and after hair dyeing were 1.45 and 1.79, respectively (p<0.01). However, the difference levels of DNA damage in lymphocytes before and after hair dyeing were found to be slightly lower in both the dietary supplement taking group and high frequency group. Conclusions : The high frequency group appears to have a higher level of DNA damage than the low frequency group before hair dyeing. DNA damage in lymphocytes was found to be significantly higher in the volunteers after hair dyeing. In this study, the related factors such as high frequency and taking dietary supplements appeard to reduce DNA damage in lymphocytes after hair dyeing.

Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model

  • Fan, Xingyu;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.501-523
    • /
    • 2016
  • Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.

Study on Optimization of Fatigue Damage Calculation Process Using Spectrum (스펙트럼을 이용한 피로손상도 계산과정 최적화 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

Model-Based Damage Detection Methods for Structural Health Monitoring of PSC Bridges (PSC교량의 구조건전성 모니터링을 위한 모델기반 손상검색기법)

  • 박재형;이병준;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.550-557
    • /
    • 2004
  • In this paper, structural damage in PSC bridges is monitored by using model-based damage detection methods. First numerical experiments on the test structure are described. Dynamic responses of the test structures are obtained fur several damage scenarios. The change in natural frequency and the change in nude shape curvature are selected as features to represent the states of the structure. Next a damage localization algorithm from monitoring the changes in natural frequency is outlined. Also, the damage localization algorithm from monitoring the changes in nude shapes is outlined. Finally, the damage localization algorithms are used to predict damage in the test structure. The results of the analysis indicate that the model-based damage detection methods correctly predicted damage in the test structure.

  • PDF

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.