• Title/Summary/Keyword: Damage cost

Search Result 935, Processing Time 0.022 seconds

A Study on Delay Time Building of Underpass for Small Car (소형차 전용 지하차도 도입에 따른 지체도 분석에 관한 연구)

  • Lee, Young-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • The development of underground space essentially leads to increase in construction cost and installation of a large structure also acts as a factor deteriorating fine sight of the city. Accordingly, there recently is a trend to make city center structures light and small if possible. In this study, for efficient development of underground space, we analyzed the change in the average delay time in comparison to the existing underpass and the influence thereof using a microscopic simulation software VISSIM 5.20 after controlling heavy vehicles not to use the underpass and to detour using the intersection above the underpass, and gradually increasing the ratio of heavy vehicles in accordance with v/c of the access road in order to examine efficiency of introducing an underpass exclusive to small cars at an underground road installed and being operated in a city road area, and presented installation standard for underpass exclusive to small vehicles adequate to the traffic characteristics. Considering the findings of the study, introduction of underpass exclusive to small cars judged to be beneficial in the aspects of reduction in the economic loss resulting from land purchase, environmental damage due to construction of large traffic structures and environment-friendly green traffic.

A Study on Flood Storage Plans of Farmlands for Extreme Flood Reduction (극한홍수 저감을 위한 농경지의 저류지화 방안 연구)

  • Kang, Hyeong-Sik;Cho, Seong-Yun;Song, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.787-795
    • /
    • 2011
  • Extreme water events such as heavy rainfalls due to recent climate change are continually increasing and their scale has also shown an increasing trend. To overcome these natural disasters, this policy study suggests securing lateral river space as an effective method for extreme flood. To support the importance of restoration and expansion of lateral river space, Gumi upstream region of the Nakdong River basin was chosen as a target area and flood reduction analysis of the washland by using LISFLOOD model have been examined. The 500-year frequency flood was simulated for the estimation of possibly occurable flood level and it turns out that the secured lateral river space on the selected site effectively lowers about 0.53 m flood level and reduces the flood damage of the city on the lower reaches of the river. In addition, based on this result, multilateral river space securing plans were compared, and conservation easement and natural disaster insurance were suggested for sustainable and cost-effective alternatives. The costs of land purchase and conservation easement for securing the river space were also compared.

Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I) - Model Development - (도시화에 따른 물순환 영향 평가 모형의 개발 및 적용(I) - 모형 개발 -)

  • Kim, Hyeon-Jun;Jang, Cheol-Hee;Noh, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • The objective of this study is to develop a catchment hydrologic cycle assessment model which can assess the impact of urban development and designing water cycle improvement facilities. Developed model might contribute to minimize the damage caused by urban development and to establish sustainableurban environments. The existing conceptual lumped models have a potential limitation in their capacity to simulate the hydrologic impacts of land use changes and assess diverse urban design. The distributed physics-based models under active study are data demanding; and much time is required to gather and check input data; and the cost of setting up a simulation and computational demand are required. The Catchment Hydrologic Cycle Assessment Tool (hereinafter the CAT) is a water cycle analysis model based on physical parameters and it has a link-node model structure. The CAT model can assess the characteristics of the short/long-term changes in water cycles before and after urbanization in the catchment. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. the model was applied to Seolma-cheon catchment, also calibrated and validated using 6 years (2002~2007) hourly streamflow data in Jeonjeokbigyo station, and the Nash-Sutcliffe model efficiencies were 0.75 (2002~2004) and 0.89 (2005~2007).

Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade (터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석)

  • 김완식;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The present study investigates numerically particle laden flow through compressor cascade. In general, a lot of turbine engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor binding and rotor path components, partial or total blockage of cooling passage and engine control system degradation.. Initial damages can not be serious but cumulation of damages influences on safety of aircraft control and economical maintenance cost of engine system can be increased. When dust, materials and volcanic particles in the atmosphere flow in the compressor, it is necessary to predict damaged and deposited region of compressor blades. To the various flow inlet angle, predictions of particles trajectory in compressor cascade by Lagrangian method are presented and impulses by impaction of particles at blade surface are calculated. By the definition of particle deposition efficiency, characteristics of particles impact are considered quantitatively. With these prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Improvements like coating of blade surface could be found, by above prediction.

  • PDF

A Study on Seismic Probabilistic Safety Assessment for a Research Reactor (연구용 원자로에 대한 지진 확률론적 안전성 평가 연구)

  • Oh, Jinho;Kwag, Shinyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • Earthquake disasters that exceed the design criteria can pose significant threats to nuclear facilities. Seismic probabilistic safety assessment(PSA) is a probabilistic way to quantify such risks. Accordingly, seismic PSA has been applied to domestic and overseas nuclear power plants, and the safety of nuclear power plants was evaluated and prepared against earthquake hazards. However, there were few examples where seismic PSA was applied in case of a research reactor with a relatively small size compared to nuclear power plants. Therefore, in this study, seismic PSA technique was applied to actually completed research reactor to analyze its safety. Also, based on these results, the optimization study on the seismic capacity of the system constituting the research reactor was carried out. As a result, the possibility of damage to the core caused by the earthquake hazard was quantified in the research reactor and its safety was confirmed. The optimization study showed that the optimal seismic capacity distribution was obtained to ensure maximum safety at a low cost compared with the current design. These results, in the future, can expect to be used as a quantitative indicator to effectively improve the safety of the research reactor with respect to earthquakes.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure (샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • Sandwich panels which are having the both sides are bonded with a heat insulating material with an iron plate are used as factories, warehouse structures as advantages of convenience in construction at economic efficiency of material cost. However, in a panel structure constructed by continuous joining of sandwich panels, a joint portion where a panel and a panel are connected is generated. The joint part is a part which is easily vulnerable to fire because flames easily flow into the melting and deformation of the iron plate during fire. The flames flowing into the panel induce diffusion of fire by rapid burning, causing damage of human life and property. In this research, we developed a flame spread prevention plate to prevent spreading of sandwich panel. This is an improvement of the workability by the anti-spreading construction method of the existing previous research, it can be applied independently to the connecting part where the panel and the panel are coupled, designed to prevent inflow and spreading of flame did. The actual fire test of the test method of KS F ISO 13784-1 of the sandwich panel specimen was conducted and the burning behavior corresponding to the presence or absence of application of the flame spread prevention plate was grasped at the panel connection part and its effect was measured. Inserting a fire spreading plate into the test result panel connecting part is measured by delaying the flashover, prevention of collapse of the specimen, and temperature rise of the opening, effectively improving the fire safety of the panel structure It was confirmed as a method that can be secured. It is judged that panel structure will contribute to ensuring fire safety by applying the fire spread prevention construction method of various methods ensuring the workability and economy of panel connection vulnerable to fire.

Finite Element Model Updating Based on Data Fusion of Acceleration and Angular Velocity (가속도 및 각속도 데이터 융합 기반 유한요소모델 개선)

  • Kim, Hyun-Jun;Cho, Soo-Jin;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2015
  • The finite element (FE) model updating is a commonly used approach in civil engineering, enabling damage detection, design verification, and load capacity identification. In the FE model updating, acceleration responses are generally employed to determine modal properties of a structure, which are subsequently used to update the initial FE model. While the acceleration-based model updating has been successful in finding better approximations of the physical systems including material and sectional properties, the boundary conditions have been considered yet to be difficult to accurately estimate as the acceleration responses only correspond to translational degree-of-freedoms (DOF). Recent advancement in the sensor technology has enabled low-cost, high-precision gyroscopes that can be adopted in the FE model updating to provide angular information of a structure. This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The usage of both acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation on a simply supported beam is presented to demonstrate the proposed FE model updating approach.

Development of Smart Active Layer Sensor (II): Manufacturing and Application (스마트 능동 레이어 센서 개발 (II): 저작 및 적용 연구)

  • Lee, Young-Sup;Lee, Sang-Il;Kwon, Jae-Hwa;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.476-486
    • /
    • 2004
  • This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

Follow-up Maintenance System Development for the Forest Erosion Control Structures (산지사방공작물(山地砂防工作物)의 사후관리기술체계설정(事後管理技術體系設定)을 위한 조사연구(調査硏究))

  • Woo, Bo Myeong;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.145-160
    • /
    • 1987
  • To evaluate damage status and necessities of repair works on the forest-side erosion control structures constructed from 1966 to 1986 in Korea, developmental procedures of erosion control structures from the standard unit-cost tables established by the Forestry Administration every year, existing counter-measures for disaster erosion control system administrated by the government organization and existing status of each structure at constructed site were investigated and analyzed integrally. About 10-15% of the constructed forest erosion control structures were required to be repaired as a result of the investigation. It is actually incapable of repairing the damaged forest erosion control structures caused by excessive run-off and floodings under the existing forest-side erosion control systems. Therefore, it is necessary to put regularly repair erosion control system that will be secured by national budgetary pre-allocation system. Especially, it is also necessary to frame a new system that repair erosion control works by national budget (central government) should be possible for any scale of damages in case of the erosion control projects for the disaster counter-measures. The results of this research could be adopted as important policy data for erosion control policy-making in forest-side in Korea.

  • PDF