• Title/Summary/Keyword: Damage by enzyme

Search Result 496, Processing Time 0.024 seconds

Glycation of Copper, Zinc-Superoxide Dismutase and its Effect on the Thiol-Metal Catalyzed Oxidation Mediated DNA Damage

  • Park, Jeen-Woo;Lee, Soo-Min
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.249-253
    • /
    • 1995
  • The nonenzymatic glycation of copper, zinc-superoxide dismutase (Cu,Zn-SOD) led to inactivation and fragmentation of the enzyme. The glycated Cu,zn-SOD was isolated by boronate affinity chromatography. The formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in calf thymus DNA and the generation of strand breaks in pBhiescript plasmid DNA by a metal-catalyzed oxidation (MCO) system composed of $Fe^{3+}$, $O_2$, and glutathione (GSH) as an electron donor was enhanced more effectively by the glycated CU,Zn-SOD than by the nonglycated enzyme. The capacity of glycated Cu,Zn-SOD to enhance damage to DNA was inhibited by diethylenetriaminepentaacetic acid (DETAPAC), azide, mannitol, and catalase. These results indicated that incubation of glycated CU,Zn-SOD with GSH-MCO may result in a release of $Cu^{2+}$ from the enzyme. The released $Cu^{2+}$ then likely participated in a Fenton-type reaction to produce hydroxyl radicals, which may cause the enhancement of DNA damage.

  • PDF

Evaluation of Genotoxicity of Three Antimalarial Drugs Amodiaquine, Mefloquine and Halofantrine in Rat Liver Cells

  • Farombi E. Olatunde
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.97-103
    • /
    • 2005
  • The genotoxic effect of antimalarial drugs amodiaquine (AQ), mefloquine (MQ) and halofantrine (HF) was investigated in.at liver cells using the alkaline comet assay. AQ, MQ and HF at concentrations between $0-1000{\mu}mol/L$ significantly increased DNA strand breaks of rat liver cells dose-dependently. The order of induction of strand breaks was AQ>MQ>HF. The rat liver cells exposed to AQ and HF (200 and 400 ${\mu}mol/L$) and treated with (Fpg) the bacterial DNA repair enzyme that recognizes oxidized purine showed greater DNA damage than those not treated with the enzyme, providing evidence that AQ and HF induced oxidation of purines. Such an effect was not observed when MQ was treated with the enzyme. Treatment of cells with catalase, an enzyme inactivating hydrogen peroxide, decreased significantly the extent of DNA damage induced by AQ, and HF but not the one induced by MQ. Similarly quercetin, an antioxidant flavonoid at $50{\mu}mol/L$ attenuated the extent of the formation of DNA strand breaks by both AQ and HE. Quercetin, however, did not modify the effects of MQ. These results indicate the genotoxicity of AQ, MQ and HF in rat liver cells. In addition, the results suggest that reactive oxygen species may be involved in the formation of DNA lesions induced by AQ and HF and that, free radical scavengers may elicit protective effects against genotoxicity of these antimalarial drugs.

  • PDF

Cytoprotection Against Oxidative Damage by Nrf2-regulated Genes

  • Kwak, Mi-Kyoung;Kensler, Thomas W.
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.207-214
    • /
    • 2007
  • Chronic oxidative stress produced by exposure to environmental chemicals or pathophysiological states can lead animals to aging, carcinogenesis and degenerative diseases. Indirect antioxidative mechanisms, in which natural or synthetic agents are used to coordinately induce the expression of cellular antioxidant capacity, have been shown to protect cells and organisms from oxidative damages. Electrophile and free radical detoxifying enzymes, which were originally identified as the products of genes induced by cancer chemopreventive agents, are members of this protective system. The NFE2 family transcription factor Nrf2 was found to govern expression of these detoxifying enzymes, and screening for Nrf2-regulated genes has identified many gene categories involved in maintaining cellular redox potential and protection from oxidative damage as Nrf2 downstream genes. Further, studies using Nrf2-deficient mice revealed that these mutant mice showed more susceptible phenotypes towards exposure to environmental chemicals/carcinogens and in oxidative stress related disease models. With the finding that cancer chemopreventive efficacy of indirect antioxidants (enzyme inducers) is lost in the absence of Nrf2, a central role of Nrf2 in the antioxidative protective system has been firmly established. Promising results from cancer prevention clinical trials using enzyme inducers propose that pharmacological interventions that modulate Nrf2 can be an effective strategy to protect tissues from oxidative damage.

Influence of Gami-oryungsan on bromobenzene-induced liver injury in experimental animal (Bromobenzene독성(毒性)에 의한 간기능손상(肝機能損傷)에 미치는 가미오령산의 영향(影響))

  • Kim, Jong-Dae
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.108-115
    • /
    • 2000
  • Objective : To investigate the hepatoprotective effects of Gami-oryungsan on the liver damage induced by bromobenzene. Method : The development of fibrosis and acute liver injury was examined by the chemical analysis of AST, AL T, ${\gamma}$-GTP . and epoxide hydrolase glutathione S-transferase glutathione peroxidase enzyme activity, lipidoperoxide levels, glutathione levels were measured and oberved. Results : The increasing levels of lipidoperoxide was decreased proportionally according to dose of extract GO. Epoxide hydrolase glutathioneS-transferase glutathione peroxidase enzyme activity highly increased in GO pre-acupunctured group compared with the group treated with only bromobenzene. The increase of serum AST, AL T, ${\gamma}$-GTP enzyme activity of mice by bromobenzene was inhibited by the administration of GO. Lipidoperoxide levels in rat's liver decreased compared to the case of bromobenzene-treated group. The levels of Glutathione decreased by bromo benzene were increased highly in GO pre-acupunctured group. Conclusion : These results suggest that GO extract recovers the damage of liver due to bromobenzene intoxication by decreasing the lipid peroxidation AST AL T ${\gamma}$-GTP enzyme activity and increasing epoxide hydrolase glutathioneS-transferase glutathione peroxidase enzyme activity, glutathione levels.

  • PDF

An Influence of Protease on Damage of Fiber (Protease가 섬유의 손상에 미치는 영향)

  • Song, Gyeong-Heon;Yang, Jin-Suk;Choe, Jong-Myeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.2
    • /
    • pp.224-232
    • /
    • 1998
  • Protease is mixtured in detergent to remove protein-soil easily. It must not act on the any fiber except protein-soil during laundry. So the purpose of this study is to investigate how protease is affect the fiber, particulary the protein-fiber. For this purpose, silk, wool and nylon are selected as samples, and the extent of the damage was estimated as tensile strength and surface condition (that is fibrillation). The results are as follows. The tensile strength of fiber treated with protease were lowered at enzyme concentration 0.1%, temperature 4$0^{\circ}C$ , and, as washing time was longer, it was lowered more. And it was showed that the surface of fibers were fiblliated by protease during washing. From this results, it was found that protease damaged protein-fiber. The damage of silk was the largest of all, and wool was less damaged than silk, because it has the scale (cuticle) on the outside. Additionary, an influence of surfactant on damage of fiber was little about three fibers, but, the fibers were damaged more by the binary nonionic-surfactant and protease mixture than by protease only.

  • PDF

Purification and Characterization of Extracellular Proteinase Produced by Pseudomonas aeruginosa (Pseudomonas aeruginosa 세포질외 serine계열 단백질 분해효소의 정제 및 특성)

  • 이은실;송철용
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.345-352
    • /
    • 1991
  • A serine proteinase of molecular weight 60 kd was purified from culture supernatant of P. aeruginosa using DEAE-Trisacryl M ion-exchange and AcA 54 gel filtration column chromatography, and the properties of serine proteinase were characterized. By means of SDS-polyacrylamide gel electrophoresis, the molecular weight of the enzyme was 55 kd. The optimal pH for the activity of purified enzyme was 7.5. The activity of the purified enzyme was completely inhibited by Di-isopropylfluorophosphate(DFP) and N-.alpha.-p-tosyl-L-lysine choloromethyl detone(TLCK) but not by other proteinase inhibitors such as E-64, pepstatin A, 1, 10-phenanthroline. The purified enzyme was capable of degrading type I and type IV collagen. Antisera obtained from hymans infected with Pseudomonas aeruginosa reacted to the purified serine proteinase in immunoblots. These results indicate that the purified enzyme is trypsin-like serine proteinase and this enzyme of P. aeruginosa may play an important role in tissue damage as a spreading factor and may be useful for serodiagnosis of Pseudomonas infections.

  • PDF

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

Effect of Myricetin Combined with Taurine on Antioxidant Enzyme System in B16F10 Cell (Myricetin과 Taruine의 병용 투여가 B16F10 세포의 항산화 효소계에 미치는 영향)

  • Yu, Ji-Sun;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • The antioxidant enzyme (AOE) system plays an important role in the defense against oxidative stress damage. To determine whether myricetin or myricetin/taurine can exert antioxidative effects not only by modulating the AOE system directly but also by scavenging free radical, we investigated the influence of the myricetin and taurine on cell viability ROS level, activities of different antioxidant enzyme, and the expression of different antioxidant enzyme. As results, the cell viability showed inhibition of the proliferation with treatment of 'myricetin' or 'myricetin with taruine', respectively, with dose-dependent manner. Compared to control, the treatment of 'myricetin' decreased activities and gene expressions of superoxide dismutase (SOD), and glutathione peroxidase (GPx). However, combined treatment of 'myricetin with taurine' increased activities and gene expressions of the SOD, GPx, and catalase (CAT). In addition, the combined treatment of 'myricetin with taurine' somewhat decreased ROS levels, compared to the treatment of 'myricetin'. In conclusion, our study provides that the combined treatment of different antioxidants can enhance antioxidant effects.

Relationship between angiotensin-converting enzyme gene polymorphism and muscle damage parameters after eccentric exercise

  • Kim, Jooyoung;Kim, Chang-Sun;Lee, Joohyung
    • Korean Journal of Exercise Nutrition
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2013
  • This study was conducted to investigate the relationship between ACE gene polymorphism and muscle damage parameters after eccentric exercise. 80 collegiate males were instructed to take an eccentric exercise with the elbow flexor muscle through the modified preacher curl machine for 2 sets of 25 cycles (total 50 cycles). The maximal isometric strength, muscle soreness, creatine kinase (CK), and myoglobin (Mb) were measured before exercise, and 0, 24, 48, 72, and 96 hrs after exercise. The result showed that after the eccentric exercise, the maximal isometric strength significantly decreased by more than 50% (p < 0.001) and the muscle soreness, CK, and Mb significantly increased compared to those before the exercise (p < 0.001). The ACE gene polymorphism of the subjects was classified using real-time polymerase chain reaction (real-time PCR). The result showed that it consisted of 38 cases of type II (46.4%), 33 cases of type ID (43.4%), and 9 cases of type DD (10.2%). The Hardy-Weinberg equilibrium for ACE gene polymorphism was shown to have p = 0.653, which showed that each allele was evenly distributed. Although significant differences in the changes in the maximal isometric strength, muscle soreness, CK, and Mb were found according to time course (p < 0.001), no significant differences in the changes in the maximal isometric strength, muscle soreness, CK, and Mb were found according to ACE gene polymorphism. Furthermore, no significant difference in the changes in the muscle damage parameters was found according to interaction between ACE gene polymorphism and time course (p > 0.05). In conclusion, the level of the muscle damage parameters changed in the injured muscle after eccentric exercise, but these changes in the muscle damage parameters were not affected by ACE gene polymorphism. The result of this study indicates that ACE gene is not a candidate gene that explains muscle damage.

Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase. (Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정)

  • 권순태;이명현;오세명;정도철;김길웅
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.