• Title/Summary/Keyword: Damage Value

Search Result 1,597, Processing Time 0.031 seconds

The Maritime Environment Impact Assessment of Offshore Floating Wind Power in Ulsan - A Focus on Habitat Equivalence Analysis - (울산 부유식 해상풍력단지 조성에 따른 환경피해의 경제적 가치추정 - 서식지 등가성 분석법을 중심으로 -)

  • Choi, Su-Young;Moon, Beom-Sik;Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.130-137
    • /
    • 2021
  • The main purpose of this study is to provide an objective evaluation standard for the assessment of marine spatial characteristics via Ulsan floating offshore wind power project using HEA.. Various levels of damage occur in the waters (5,017.6) near the floating offshore wind power terminals in Ulsan, including commercial damage, ecological destruction and reduction in quality of life due to seascape damage. Alternative restoration projects for calculating the economic value of damage were selected including artificial reef projects and estimates based on HEA. For basic households with a 4.5% social discount rate and a 100% maturity index over four years, the damage was approximately 457 hundred million won. The HEA in this study resolves the possible irrationality in the evaluation of marine spatial characteristics, since the value is calculated based on objective and clear DATA. Therefore, the study results are intended to facilitate conflict resolution between stakeholders in the future during the implementation of the marine spatial plan.

Failure Analysis in Al 7075-T651 Alloy using X-ray Diffraction Technique (X-선 회절을 이용한 A1 7075-T651합금의 파손해소)

  • 오세욱;박수영;부명환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-113
    • /
    • 1993
  • X-ray diffraction analysis technique was used for the fatigue damage analysis and fatigue life prediction in Al 7075-T651 alloy. The tensile test, fatigue strength and fatigue crack propagation test with change of stress ratio were carried out. As a result, half-value breadth was increased with the plastic deformation in the specimen increasint at all test conditions. In particular, half-value breadth at the surface of the specimens fractured by fatigue was increased as stress intensity factor range and effective stress intensity factor range were increased. In addition, the good relationship between half-value breadty and diffraction pattern was shown.

  • PDF

Radiation-induced thermal conductivity degradation modeling of zirconium

  • Sangil Choi;Hyunmyung Kim;Seunghwan Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1277-1283
    • /
    • 2024
  • This study presents a radiation-induced thermal conductivity degradation (TCD) model of zirconium as compared to the conventional UO2 TCD model. We derived the governing factors of the radiation-induced TCD model, such as maximum TCD value and temperature range of TCD. The maximum TCD value was derived by two methods, in which 1) experimental result of 32 % TCD was directly utilized as the maximum TCD value and 2) a theoretical approach based on dislocation was applied to derive the maximum TCD value. Further, the temperature range of TCD was determined to be 437-837 K by 1) experimental results of post-annealing of irradiation hardening as compared to 2) the rate theory and thermal equilibrium. Consequently, the radiation-induced TCD model of zirconium was derived to be $f_r=1-{\frac{0.32}{1+{\exp}\,\{(T-637)/45\}}}$. Because the thermal conductivity of zirconium is one of the factors determining the storage and transport system, this newly proposed model could improve the safety analysis of spent fuel storage systems.

Study on Quality Factor Measurement for Cherry Tomato using Color Imagery (칼라영상을 이용한 방울토마토 품질 인자 계측에 관한 연구)

  • Kim, Dae-Yong;Oh, Hyun-Keun;Lee, Nam-Keun;Kim, Young-Sik;Cho, Byung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.303-308
    • /
    • 2010
  • Surface color is the most important quality factor for the grade evaluation of cherry tomato. Color is one of the representative indicators for the maturity which is closely related to the internal quality of cherry tomato, such as firmness, sugar content, and acidity. This study was carried out to investigate the relationship between surface color and internal quality of cherry tomatoes harvested from both hydroponic and soil culture at different ripening stages. To calculate the color values of cherry tomatoes an automatic color imaging system was constructed. A specially designed image processing algorithm for the color measurement was developed. The color values of L*, a*, b* were calculated from the initial color values of RGB and then compared with the internal quality. Statistical analyses indicated that the internal quality was more highly correlated with the surface color than size of cherry tomatoes. Color image features were also investigated to detect external damage of cherry tomatoes. The value of (R value - R mean value)/R mean value was the most effective image feature for the detection of damaged areas on the surface of cherry tomatoes. The results of this study demonstrated the feasibility of color sorting process as an alternative of the conventional drum type size sorting system for cherry tomato industry.

Damage at the Peach Due to Vibrational Stress During Transportation Simulation Test (모의수송 중 진동피로에 의한 복숭아의 손상)

  • Choi, Seung-Ryul;Lee, Young-Hee;Choi, Dong-Soo;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.182-188
    • /
    • 2010
  • Post-Harvest processing engineering is a field that studies prevention of the quality change of agricultural products during sorting, packaging, storage, and distribution after harvested. In distribution steps, agricultural products could be damaged by physical force, it is the main reason of low quality and they lost value of commodities. This study was performed to find the vibration characteristics of the peach, and to find the extent of the damage on the peach by fatigue stress. The vibration data was obtained on expressway and the vibration characteristics of peach was used to find the damage on the peach. To analyze the vibration characteristics of peach, the resonance frequency and vibration transmissibility were measured. The resonance frequency of the peach was 167.98 Hz and the transmissibility was 4.06 at resonance point. It was 150 ~ 250 Hz that the transmissibility was more than 1. And the transmissibility in simulated test was measured. When the trasmissibility was more than 1, the range was 15 ~ 65 Hz, and when it was less than 1, the range was 65 ~ 175 Hz. When the transmissibility was about 1, the range was 5 ~ 15 Hz. The damage and the vibration cycle numbers of peaches were compared with input frequency and acceleration. More damage and less cycle number happened in 30 Hz than in 62.5 Hz. The reason was that the transmissibility of 30 Hz was higher and the vibration displacement in lower frequency was more. The more acceleration and cycle number increased, the more the bruising volume of peaches increased. The bruising volume ratio for vibration fatigue was measured according to input acceleration and cycle number. Using measured data, regression models for bruising volume ratio(BVR) was developed as a function of the acceleration(A) and cycle number(CN) as follows. BVR = a * $A^b*$ $(CN)^c$

Infection Properties of Oak Wilt Disease in Bukhansan National Park Adjacent to Metropolitan Areas in Korea

  • Choi, Jin-Woo;Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.803-815
    • /
    • 2017
  • In this study of the oak wilt disease that has occurred in a large scale in a protected area located near South Korea's metropolitan region, a detailed analysis has been conducted on the terrain, species and Diameters at Breast Height (DBH) of infected trees to identify the distribution of infection properties in the affected area. Taking into consideration the distribution of oak tree vegetation, a total of 4,640 quadrats in a size of 10 m by 10 m, have been set; and oak tree species, the DBH and infection damage per quadrat have been investigated. Geological properties have been analyzed according to elevation, slope, aspect and micro topography while a weighted value has been given according to the degree of infection in order to calculate an infection index. Through correlation analysis, the infection ratio of seriously-damaged and withered trees and the infection index have been analyzed with regards to the geological properties, tree species and DBH. The analysis shows that the disease tends to affect an area with medium elevation rather than those in the highest or lowest areas and that serious damage has been observed at rugged spots with a steep gradient (more than $30^{\circ}$). Although there has been no distinct tendency with regards to aspect, the infection ratio is relatively high in areas facing the north while the seriously-damaged and withered ratio are high in areas facing the south. In terms of micro topography, more damage has been spotted in valley terrain. Quercus mongolica has sustained more damage than other species. When it comes to the DBH, as seen in previous studies, large trees have suffered severe damage, but the analysis has also revealed conspicuous damage to medium trees with a DBH of 15-20 cm, which had not previously been considered at high risk.

A Study on Estimation of Overpressure Damage Caused by Rupture of Butane Can (volume : 34 g) (부탄 캔(용량 : 34 g)파열로 인한 과압의 피해예측에 관한 연구)

  • Leem Sa Hwan;Choi Ic Whoan;Lim Dong Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.8-15
    • /
    • 2005
  • With the introduction of 40 hour working week system, more households enjoy picnics on weekends. More gas accidents take place on Saturdays and on Sundays than any other days of week. As of October, 2004 casualties resulted from butane can accidents increased 1.5 times compared to the same period of the previous year. In this study, the influence of explosion over-pressure caused by the rupture of butane can thrown away after use was calculated by using the Hopkinson's Scaling Law and the accident damage was estimated by applying the influence on the adjacent structures and people into the Probit model. As a result of the damage estimation conducted by using the Probit model, both the damage possibility of explosion over-pressure to structures 50 meters away and that of over-pressure to people 10 meters away showed nothing. The explosion efficiency used was 100 percent. As a result of this, the actual damage influenced by the rupture of butane can would be lower than the value calculated in this study and expected to be safer.

  • PDF

Preliminary Analysis of Climate Change Damage in Korea Using the PAGE Model (PAGE 모델을 이용한 한국 기후변화의 피해비용 분석)

  • Chae, Yeo-Ra
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.31-55
    • /
    • 2010
  • This study aims to estimate potential climate change damage in Korea using the PAGE model. This study reviewed previous a reasearch to compare relative sensitivity to climate change in Korea and other regions to generate climate change damage function. It was found that sensitivity to climate change in Korea is similar to other Organization for Economic Cooperation and Development (OECD) countries. This study estimated climate change impact for three scenarios. If no action is taken, climate change damage cost in Korea could reach US$ 12,928 ~ 57,900 M. Cumulative Net Present Value (NPV)of climate change impact from 1990 to 2100 would be between US$ 143,226 ~ 921,701 Mdepending on emission scenarios. However, this result should be interpreted with caution as it draws its damage function based on only a few available references. Results also showed that an adaptation policy could decrease the degree of climate change impact significantly. If an adaptation policy is implemented, climate change impact will be decreased by US$ 11,355 million dollars in Korea in 2100.

  • PDF

Conceptual Design of Damage Assessment Inventory in Response to Disaster Risk for Infrastructures Close to River (수변구조물 재해 위험에 대응하기 위한 피해 평가 인벤토리 개념 설계)

  • Jo, Yun-Won;Choi, Hyeoung-Wook;Choi, Soo-Young;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.144-158
    • /
    • 2014
  • This research presented a conceptual design of damage assessment inventory for efficient response to natural disaster damage of infrastructure close to the river. It consists of classification and categorization of facilities for accomplishing the conceptual design of inventory for damage of infrastructure close to the river. However, there are arising problems of efficient management on disaster, such as poor management of data facilities and constructions which is managed by the different types of government departments. Therefore, this research presented conceptual models of damage assessment inventory on risks of damage infrastructure close to the river using the United states' HAZUS-MH to analyze damage facilities, type of asset classification, classification of domestic facilities and guidelines for computing the value of assets. Conceptual models of inventory this research presented is to be used on the data for damage response on protected inland damage assessment and to increase efficiency for evaluating detailed damage amount of private property by natural disaster and to establish a restoration plan.

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Kwon, Yong-Min;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.26-37
    • /
    • 2020
  • This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.