• Title/Summary/Keyword: Damage Strength

Search Result 2,010, Processing Time 0.029 seconds

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

Drop-weight impact damage evaluation for carbon fiber/epoxy composite laminates (탄소 섬유강화 복합재료의 중력 낙하 충격으로 인한 손상 평가)

  • Sohn, Min-Seok;Hu, Xiao-Xhi;Ki, Jang-Kyo;Hong, Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.89-92
    • /
    • 2001
  • Drop weight impact tests were performed to investigate the impact behavior of carbon fiber/epoxy composite laminates reinforced by short fibers and other interleaving materials. Characterization techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates. Scanning electron microscopy was used to observe impact damage and fracture modes on specimen fracture surfaces. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking and fiber breakage depending on the interlayer materials. Among the composite laminates tested in this study, the composites reinforced by Zylon fibers showed very good impact damage resistance with medium level of damage, while the composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is expected to deteriorate the bulk strength due to the reduction of fiber volume fraction, even though the damaged area is significantly reduced.

  • PDF

The Change of Hair Physical and Mechanical Properties according to Permanent Wave Treatment Method (퍼머넌트 웨이브 시술방법에 따른 모발의 물리적·역학적 특성 변화)

  • Yoo, Tae-Soon;Kim, Jung-Hae;Jung, Youn
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • This research is the hair damage as treating a permanent wave before and after that is compared and analyzed the change of physical and mechanical properties. This is the survey of women's hair in 20 years old. On the basis of this we would like to analyze a extend of hair damage. Also, we would to show a basic data for hair damage prevention and hair improvement to keep the beautiful and healthy hair. The conclusion is as follow. : The swelling degree after the treatment was found to be greater than before permanent wave treatment. For the formational characteristics wave, untreated hair certainly had more elastic S curl wave than damaged hair in all the permanent wave treatments, and damaged hair and extremely damaged hair had less elasticity and had saggy S curl wave. The protein permanent and soft permanent wave had thicker, gorgeous, and better elastic wave than the regular permanent wave and direct heating permanent wave in all the hair condition. As the degree of damage on hair got greater, the tensile strength dramatically decreased and as the degree of damage got greater, the elongation was great as well. For treatment method, direct heating permanent wave showed the greatest effect, causing the most damage.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.

Effect of Burn out Print Finishing on Cellulose Fiber Damage (섬유소계 직물의 탄화날염가공이 섬유손성에 미치는 영향)

  • 신정숙;송석규
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.124-131
    • /
    • 2001
  • To find out the effect of burn out print finishing for better quality of fabric, examined processing which could make less damages on the fiber because the biggest problem is remained fibers damage after burn out print finishing. Fiber damage examined to the condition of finishing material NaHSO$_4$and H$_2$SO$_4$, 3~10min., 100~13$0^{\circ}C$, glycerin. The fiber damages evaluated the break strength and the surface condition by SEM. Among satin, pile fabric which remained fiber is silk, warp knitted fabric which remained fiber is polyester, the fibers damage level were warp knitted fabric$0^{\circ}C$, glycerin and for 6 minutes by NaHSO$_4$. When carbonized by 20%. 50% and 70% to express textile design, carbonizing rate was not effect on the fiber damage very much. There was almost no damages with glycerine, and almost no damages during 3~6minutes fixation time, 10$0^{\circ}C$ steaming heat fixation by NaHSO$_4$and H$_2$SO$_4$. Without glycerine, there were damage by hydrolysis on polyesters surface and the fiver was broken by fixation time.

  • PDF

Acoustic Emission Monitoring of Lightning-Damaged CFRP Laminates during Compression-after-Impact Test

  • Shin, Jae-Ha;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.269-275
    • /
    • 2012
  • Carbon-fiber reinforced plastic(CFRP) laminates made of nano-particle-coated carbon fibers and damaged by a simulated lightning strike were tested under compression-after-impact(CAI) mode, during which the damage progress due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. Conductive nano-particles were coated directly on the fibers, from which CFRP coupons were made. The coupon were subjected to the strikes with a high voltage/current impulse of 10~40 kA within a few ${\mu}s$. The effects of nano-particle coating and the degree of damage induced by the simulated lightning strikes on AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. The assessment during the CAI tests of damaged CFRP showed that AE monitoring appeared to be useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact

  • Aghaei, Manizheh;Forouzan, Mohammad R.;Nikforouz, Mehdi;Shahabi, Elham
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1291-1303
    • /
    • 2015
  • Damage caused by low velocity impact is so dangerous in composites because although in most cases it is not visible to the eye, it can greatly reduce the strength of the composite material. In this paper, damage development in U-section glass/polyester pultruded beams subjected to low velocity impact was considered. Different failure criteria such as Maximum stress, Maximum strain, Hou, Hashin and the combination of Maximum strain criteria for fiber failure and Hou criteria for matrix failure were programmed and implemented in ABAQUS software via a user subroutine VUMAT. A suitable degradation model was also considered for reducing material constants due to damage. Experimental tests, which performed to validate numerical results, showed that Hashin and Hou failure criteria have better accuracy in predicting force-time history than the other three criteria. However, maximum stress and Hashin failure criteria had the best prediction for damage area, in comparison with the other three criteria. Finally in order to compare numerical model with the experimental results in terms of extent of damage, bending test was performed after impact and the behavior of the beam was considered.

Vulnerability model of an Australian high-set house subjected to cyclonic wind loading

  • Henderson, D.J.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.269-285
    • /
    • 2007
  • This paper assesses the damage to high-set rectangular-plan houses with low-pitch gable roofs (built in the 1960 and 70s in the northern parts of Australia) to wind speeds experienced in tropical cyclones. The study estimates the likely failure mode and percentage of failure for a representative proportion of houses with increasing wind speed. Structural reliability concepts are used to determine the levels of damage. The wind load and the component connection strengths are treated as random variables with log-normal distributions. These variables are derived from experiments, structural analysis, damage investigations and experience. This study also incorporates progressive failures and considers the inter-dependency between the structural components in the house, when estimating the types and percentages of the overall failures in the population of these houses. The progressively increasing percentage of houses being subjected to high internal pressures resulting from damage to the envelope is considered. Results from this study also compare favourably with levels of damage and related modes of failure for high-set houses observed in post-cyclone damage surveys.