• Title/Summary/Keyword: Damage Monitoring

Search Result 1,455, Processing Time 0.024 seconds

Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node (무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.

Hybrid Monitoring for Damage Detection in Structural Joints (구조 접합부의 손상검색을 위한 하이브리드 모니터링)

  • Kim Jeong-Tae;Na Won-Bae;Lee Byung-Jun;Hong Dong-Soo;Do Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.225-231
    • /
    • 2006
  • The purpose of this study is to develop a promising hybrid structural health monitoring system for structural joints. For this propose, the combined use of vibration-based techniques and electro-mechanical impedance technique is employed. For the verification of the proposed health monitoring scheme, a series of damage scenarios are designed to simulate various situations at which the connection joints can experience during their service life. The obtained experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the connecting states and the target damage locations. From the analysis. it is shown that the proposed hybrid health monitoring system is successful for acquiring global and local damage information on the structural joints.

  • PDF

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Model-Based Damage Detection Methods for Structural Health Monitoring of PSC Bridges (PSC교량의 구조건전성 모니터링을 위한 모델기반 손상검색기법)

  • 박재형;이병준;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.550-557
    • /
    • 2004
  • In this paper, structural damage in PSC bridges is monitored by using model-based damage detection methods. First numerical experiments on the test structure are described. Dynamic responses of the test structures are obtained fur several damage scenarios. The change in natural frequency and the change in nude shape curvature are selected as features to represent the states of the structure. Next a damage localization algorithm from monitoring the changes in natural frequency is outlined. Also, the damage localization algorithm from monitoring the changes in nude shapes is outlined. Finally, the damage localization algorithms are used to predict damage in the test structure. The results of the analysis indicate that the model-based damage detection methods correctly predicted damage in the test structure.

  • PDF

Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response (PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링)

  • Ho, Duc-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • The main objective of this study is to examine the feasibility of using lead zirconate titanate (PZT)'s direct piezoelectric response as vibrational feature for damage monitoring in beam structures. For the purpose, modal strain energy (MSE)-based damage monitoring in beam structures using dynamic strain response based on the direct piezoelectric effect of PZT sensor is proposed in this paper. The following approaches are used to achieve the objective. First, the theoretical background of PZT's direct piezoelectric effect for dynamic strain response is presented. Next, the damage monitoring method that utilizes the change in MSE to locate of damage in beam structures is outlined. For validation, forced vibration tests are carried out on lab-scale cantilever beam. For several damage scenarios, dynamic responses are measured by three different sensor types (accelerometer, PZT sensor and electrical strain gage) and damage monitoring tasks are performed thereafter. The performance of PZT's direct piezoelectric response for MSE-based damage monitoring is evaluated by comparing the damage localization results from the three sensor types.

A scheme on multi-tier heterogeneous networks for citywide damage monitoring in an earthquake

  • Fujiwara, Takahiro;Watanabe, Takashi;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.497-510
    • /
    • 2013
  • Quick, accurate damage monitoring is strongly required for damage assessment in the aftermath of a large natural disaster. Wireless sensor networks are promising technologies to acquire damage information in a citywide area. The wireless sensor networks, however, would be faced with difficulty to collect data in real-time and to expand the scalability of the networks. This paper discusses a scheme of network architecture to cove a whole city in multi-tier heterogeneous networks, which consist of wireless sensor networks, access networks and a backbone network. We first review previous studies for citywide damage monitoring, and then discuss the feature of multi-tier heterogeneous networks to cover a citywide area.

The Development of Third-Party Damage Monitoring System for Natural Gas Pipeline Using Sound Propagation Model (음향 전파 모델을 이용한 천연가스 배관용 타공사 모니터링 시스템의 개발)

  • Shin, Seung-Mok;Suh, Jin-Ho;Yu, Hui Ryong;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.905-910
    • /
    • 2003
  • In this paper, we develop real-time monitoring system to detect third-party damage on natural gas pipeline by using sound propagation model. Since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed real-time monitoring system can execute a significant role in reducing many third-party damage incidents. The developed system is composed of three steps as follows: i) DSP based system, ii) wireless communication system, iii) the calculation and monitoring software to detect the position of third-party damage using the propagation speed of acoustic wave. Furthermore, the developed system was set at practical offshore pipeline between two islands in Korea and it has been operating in real time.

  • PDF

A near and far-field monitoring technique for damage detection in concrete structures

  • Providakis, Costas;Stefanaki, K.;Voutetaki, M.;Tsompanakis, J.;Stavroulaki, M.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • Real-time near and far-field monitoring of concrete structural components gives enough information on the time and condition at which damage occurs, thereby facilitating damage detection while in the same time evaluate the cause of the damage. This paper experimentally investigates an integrated monitoring technique for near and far-field damage detection in concrete structures based on simultaneous use of electromechanical admittance technique in combination with guided wave propagation. The proposed sensing system does not measure the electromechanical admittance itself but detect time variations in output voltages of the response signal obtained across the electrodes of piezoelectric transducers bonded on surfaces of concrete structures. The damage identification is based on the spectral estimation MUSIC algorithm. Experimental results show the efficiency and performance of the proposed measuring technique.

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

A Study on Damage Evaluations of Truss for Large Structure Health Monitoring (대형 구조물 상태평가를 위한 트러스 구조물 손상 평가에 관한 연구)

  • Lee, Jong-Ho;Kim, Seon-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.130-131
    • /
    • 2016
  • This study was performed for application of Structural Health Monitoring system of large structures. In order to evaluate damage of a structure, strain data of truss members that are changing with damage are gained by FEM analysis program. These data are used to train Artificial Neural Network(ANN), and this ANN algorithm can be used to analysis strain data for evaluating damage of the truss members.

  • PDF