• 제목/요약/키워드: Damage Model

검색결과 4,356건 처리시간 0.027초

A computational setting of calcium leaching in concrete and its coupling with continuum damage mechanics

  • Nguyen, V.H.;Nedjar, B.;Torrenti, J.M.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.131-150
    • /
    • 2004
  • We present in this work a coupled phenomenological chemo-mechanical model that represents the degradation of concrete-like materials. The chemical behaviour is described by the nowadays well known simplified calcium leaching approach. And the mechanical damage behaviour is described by a continuum damage model which involves the gradient of the damage quantity. The coupled nonlinear problem at hand is addressed within the context of the finite element method. For the equation governing the calcium dissolution-diffusion part of the problem, special care is taken to treat the highly nonlinear calcium conductivity and solid calcium functions. The algorithmic design is based on a Newton-type iterative scheme where use is made of a recently proposed relaxed linearization procedure. And for the equation governing the damage part of the problem, an augmented Lagrangian formulation is used to take into account the damage irreversibility constraint. Finally, numerical simulations are compared with experimental results on cement paste.

Correlation Analysis between Building Damage Cost and Major Factors Affected by Typhoon

  • Yang, Sungpil;Yu, Yeongjin;Kim, Sangho;Son, Kiyoung
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.702-703
    • /
    • 2015
  • Currently, according to the climate change, serious damage by Typhoon has been occurred in the world. In this respect, the research on the damage prediction model to minimize the damage from various natural disaster has been conducted in several developed countries. In the case of U.S, various damage prediction models of buildings from natural disasters have been used widely in many organizations such as insurance companies and governments. In South Korea, although studies regarding damage prediction model of hurricane have been conducted, the scope has been only limited to consider the property of hurricane. However, it is necessary to consider various factors such as socio-economic, physical, geographical, and built environmental factors to predict the damages. Therefore, to address this issue, correlation analysis is conducted between various variables based on the data of hurricane from 2003 to 2012. The findings of this study can be utilized to develop for predicting the damage of hurricane on buildings.

  • PDF

경사제 피복재의 유지관리를 위한 추계학적 확률모형 (Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters)

  • 이철응;김상욱
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1007-1015
    • /
    • 2013
  • 하중 발생과정에 따른 누적피해의 선형뿐만 아니라 비선형 거동을 해석할 수 있는 추계학적 확률모형이 수립되었다. 여러 종류의 피해강도함수를 도입하여 내용년수의 파괴확률과 비선형 누적피해의 거동이 자세히 해석되었다. 특히 본 연구에서는 저항한계를 임의의 분포함수를 갖는 확률변수로 취급하여 한계상태의 불확실성을 고려하였다. 또한 피복재에 대한 피해수준을 이용하여 처음으로 추계학적 확률모형을 경사제에 적용하였다. 실험 자료와의 비교를 통해 추정된 경사제 피복재에 대해 피해강도함수를 이용하여 내용년수에 따른 파괴확률과 비선형 누적피해의 거동을 해석하였다. 마지막으로 해석 결과를 이용하여 경사제 피복재의 보수 보강 시점과 최소한의 보수 보강규모를 정량적으로 산정할 수 있는 예방적 유지관리 방법을 제시하였다.

반복하중을 받는 스테인리스강의 이력거동 해석모델 개발 (Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading)

  • 전준태
    • 한국재난정보학회 논문집
    • /
    • 제15권2호
    • /
    • pp.186-197
    • /
    • 2019
  • 연구목적: 본 연구에서는 대변형 효과를 구현할 수 있는 유한요소 해석기법을 기반으로 반복하중에 의한 스테인리스강의 이력거동을 정확하게 평가할 수 있는 비선형 반복소성 손상모델을 개발하였다. 연구방법: 개선된 운동경화 모델과 등방경화 법칙을 연계하여 반복하중 하에서의 재료의 거동을 모사하는데 필요한 반복소성 모델을 개발하였으며, 이를 비선형 손상모델과 결합하였다. 연구결과 및 결론: 제안된 비선형 손상모델을 검증하기 위하여 변형률 제어 단조 및 반복하중 시험을 모사하였으며, 이를 통한 해석결과를 시험결과와 비교하였다. 비교 결과, 본 연구에서 제안한 비선형 손상모델은 스테인리스강의 반복하중 하에서의 이력거동을 정확하게 모사할 수 있음을 확인하였다.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

불규칙 피로하중을 받는 2인승용 자전거의 차대에 관한 내구성 연구 (Durability Study on Two-passenger Bicycle Frame under Non-uniform Fatigue Load)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.92-98
    • /
    • 2015
  • This study investigates the durability of a two-passenger bicycle frame under non-uniform fatigue load. The bicycle frame of Model 1 installed with reinforcement support has a 20% lower maximum equivalent stress than the existing Model 2. Model 1 has a maximum total deformation that is less than half that of Model 2. Model 1 has a higher maximum fatigue life than Model 2. In addition, Model 1 has lower fatigue damage than Model 2. Thus, the bicycle frame of Model 1 installed with reinforcement support can be described as safer, as it offers more strength than Model 2. Applying this result to the design of a real two-passenger bicycle frame under non-uniform fatigue load can effectively prevent fatigue damage and improve durability.

3차원 수리모형을 이용한 농업용 저수지의 파괴확률에 따른 하류부 피해예측 모델 개발 (Development of Downstream Flood Damage Prediction Model Based on Probability of Failure Analysis in Agricultural Reservoir)

  • 전정배;윤성수;최원
    • 한국농공학회논문집
    • /
    • 제62권3호
    • /
    • pp.95-107
    • /
    • 2020
  • The failures of the agricultural reservoirs that most have more than 50 years, have increased due to the abnormal weather and localized heavy rains. There are many studies on the prediction of damage from reservoir collapse, however, these referenced studies focused on evaluating reservoir collapse as single unit and applyed to one and two dimensional hydrodynamic model to identify the fluid flow. This study is to estimate failure probability of spillway, sliding, bearing capacity and overflowing targeting small and medium scale agricultural reservoirs. In addition, we calculate failure probability by complex mode. Moreover, we predict downstream flood damage by reservoir failure applying three dimensional hydrodynamic model. When the reservoir destroyed, the results are as follows; (1) the flow of fluid proceeds to same stream direction and to a lower slope by potential and kinetic energy; (2) The predicted damage in downstream is evaluated that damage due to building destruction is the highest.

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading

  • Wang, Lixiao;Chen, Qidong;Liu, Xin;Zhang, Bin;Shen, Yichen
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.11-20
    • /
    • 2020
  • Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

실제피해엄중도 Model과 누적피해일 Model의 개발 (Development of Damage Index Model and Cumulative Damage Days Model)

  • 여용석
    • 한국응용곤충학회지
    • /
    • 제34권1호
    • /
    • pp.33-39
    • /
    • 1995
  • 본문은 가지의 포전시험자료에 근거하여 점박이응애붙이(Tetranichus cinabaruinus(Boisduval))의 밀도와 피해엄중도간의 관계를 검토하였는데 그 결과 응애밀도와 피해엄중도간의 농약을 살포하기전 혹은 응애가 확산하기 전에는 정상관성(r=${0.865}^{\ast}{\ast}$)을 나타냈으나 통상적인 수량적 관계는 나타내지 않았다. 계통적조사에 근거하여 실제피해엄중도(DI) 증가율 model과 실측피해엄중도 model을 작성한 후 그 두 model로 실제피해엄중도 측정 model을 구성하였다. 피해정도를 잘 반영할 수 있는 누적피해일(cumulative damage days, CDD) 개념을 제출하고 그 수학적 model을 세웠다. 누적피해일은 실제피해엄중도곡선아래의 면적으로서 적분으로 표할 수 있는데 그속에 피해의 점차적이며 누적적인 기본 과정이 뒷받침 되어 있지 않다. 여러 가지 피해정도 표기법을 서로 서로 비교한 결과 CDD가 가장 합리적이었고 또한 동일한 생태조건(동지)하에서는 CDD와 DI가 일정한 등가성이 있었다.

  • PDF