Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (51705037).
References
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. http://dx.doi.org/10.12989/cac.2016.18.2.155.
- Abyaneh, S.D., Wong, H.S. and Buenfeld, N.R. (2013), "Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes", Comput. Mater. Sci., 78, 63-73. https://doi.org/10.1016/j.commatsci.2013.05.024.
- Al-Salloum, Y., Almusallam, T., Ibrahim, S.M., Abbas, H. and Alsayed, S. (2015), "Rate dependent behavior and modeling of concrete based on SHPB experiments", Cement Concrete Compos., 55, 34-44. https://doi.org/10.1016/j.cemconcomp.2014.07.011.
- Alexandre, B.J. and Gomes, A. (2013), "Compressive behavior and failure modes of structural lightweight aggregate concrete - Characterization and strength prediction", Mater. Des., 46, 832-841. https://doi.org/10.1016/j.matdes.2012.11.004.
- Anil, O., Durucan, C., Erdem, R.T. and Yorgancilar, M.A. (2016), "Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading", Constr. Build. Mater., 125, 94-104. https://doi.org/10.1016/j.conbuildmat.2016.08.028.
- Aoude, H., Dagenais, F.P., Burrell, R.P. and Saatcioglu, M. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under blast loading", Int. J. Impact Eng., 80, 185-202. https://doi.org/10.1016/j.ijimpeng.2015.02.006.
- Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.
- Bazant, Z.P. and Tabbara, M.R. (1990), "Random particle models for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).
- Cao, L., Liu, J.P. and Chen, Y.F. (2018), "Vibration performance of arch prestressed concrete truss girder under impulse excitation", Eng. Struct., 165, 386-395. https://doi.org/10.1016/j.engstruct.2018.03.050.
- Chen, J.Q., Wang, H. and Li, L. (2017), "Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures", Int. J. Pave. Eng., 9(18), 824-836. https://doi.org/10.1080/10298436.2015.1066005.
- Chen, J.Q., Wang, H., Dan, H.C. and Xie, Y.J. (2018), "Random modeling of three-dimensional heterogeneous microstructure of asphalt concrete for mechanical analysis", J. Eng. Mech., 9, 144. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001505.
- Du, X.L., Jin, L. and Ma, G.W. (2014), "Numerical simulation of dynamic tensile-failure of concrete at meso-scale", Int. J. Impact Eng., 66, 5-17. https://doi.org/10.1016/j.ijimpeng.2013.12.005.
- Ganesan, N., Raj, J.B. and Shashikala, A.P. (2013), "Flexural fatigue behavior of self compacting rubberized concrete", Constr. Build. Mater., 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077.
- Gholipour, G., Zhang, C.W. and Mousavi, A.A. (2019), "Loading rate effects on the responses of simply supported RC beams subjected to the combination of impact and blast loads", Eng. Struct., 201, 109837. https://doi.org/10.1016/j.engstruct.2019.109837.
- Gultop, T., Yilmaz, M.C. and Alyavuz, B. (2015), "An analytical investigation of rigid plastic beams under impact loading", J. Facul. Eng. Arch. Gazi Univ., 1(30), 87-94.
- Heravi, A.A., Curosu, I. and Mechtcherine, V. (2020), "A gravity-driven split Hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading", Cement Concrete Compos., 105, UNSP 103430. https://doi.org/10.1016/j.cemconcomp.2019.103430
- Huang, Y.J., Yang, Z.J., Ren, W.Y., Liu, G.H. and Zhang, C.Z. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solid. Struct., 67-68, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
- Jin, R.Y. and Chen, Q. (2019), "Overview of concrete recycling legislation and practice in the United States", J. Constr. Eng. Manage., 4, 145. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001630.
- Kalinowska, W.K., Pawluczuk, E. and Boltryk, M. (2020), "Waste-free technology for recycling concrete rubble", Constr. Build. Mater., 234, UNSP 117407. https://doi.org/10.1016/j.conbuildmat.2019.117407.
-
Kaliyavaradhan, S.K. and Ling, T.C. (2017), "Potential of CO2 sequestration through construction and demolition (C&D) waste -An overview", J.
$CO_2$ Utiliz., 20, 234-242. https://doi.org/10.1016/j.jcou.2017.05.014. - Kim, J.R., Kwak, H.G. and Kim, B.S. (2019), "Finite element analyses and design of post-tensioned anchorage zone in ultra-high-performance concrete beams", Adv. Struct. Eng., 22(2), 323-336. https://doi.org/10.1177/1369433218787727.
- Kim, K., Bolander, J.E. and Lim, Y.M. (2013), "Failure simulation of RC structures under highly dynamic conditions using random lattice models", Comput. Struct., 125, 127-136. https://doi.org/10.1016/j.compstruc.2013.04.007.
- Kwak, H.G. and Gang, H.G. (2015), "An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions", Int. J. Impact Eng., 86, 84-95. https://doi.org/10.1016/j.ijimpeng.2015.07.008.
- Li, Y., Algassem, O. and Aoude, H. (2018), "Response of high-strength reinforced concrete beams under shock-tube induced blast loading", Constr. Build. Mater., 189, 420-437. https://doi.org/10.1016/j.conbuildmat.2018.09.005.
- Liang, S.X., Chen, J.S., Li, J., Lin, S.P., Chi, S.W., Hillman, M., Roth, M. and Heard, W. (2017), "Numerical investigation of statistical variation of concrete damage properties between scales", Int. J. Fract., 208(1-2), 97-113. https://doi.org/10.1007/s10704-017-0217-z.
- Liu, H.F. and Ning, J.G. (2009), "Mechanical behavior of reinforced concrete subjected to impact loading", Mech. Mater., 41(12), 1298-1308. https://doi.org/10.1016/j.mechmat.2009.05.008.
- Liu, H.F., Fu, J. and Ning, J.G. (2016), "Experimental study on the dynamic mechanical properties of reinforced concrete under shock loading", Acta Mechanica Solida Sinica, 29(1), 253-261. https://doi.org/10.1016/S0894-9166(16)60004-6.
- Liu, H.K., Ren, X.D., Liang, S.X. and Li, J. (2019), "Physical mechanism of concrete damage under compression", Mater. (Basel, Switzerland), 12(20), 3295. https://doi.org/10.3390/ma12203295.
- Lotfi, S., Eggimann, M., Wagner, E., Mroz, R. and Deja, J. (2015), "Performance of recycled aggregate concrete based on a new concrete recycling technology", Constr. Build. Mater., 95, 243-256. https://doi.org/10.1016/j.conbuildmat.2015.07.021.
- Matzenmiller, A., Lubliner, J. and Taylor, R.L. (1995), "A constitutive model for anisotropic damage in fiber-composites", Mech. Mater., 20(2), 125-152. https://doi.org/10.1016/0167-6636(94)00053-0.
- Nakahata, K., Kawamura, G., Yano, T. and Hirose, S. (2015), "Three-dimensional numerical modeling of ultrasonic wave propagation in concrete and its experimental validation", Constr. Build. Mater., 78, 217-223. https://doi.org/10.1016/j.conbuildmat.2014.12.049.
- Nam, J.W., Choi, H.J., Kim, J.H.J., Kim, I.S., Yi, N.H. and Kim, H.J. (2009), "Blast analysis of concrete arch structures for FRP retrofitting design", Comput. Concrete, 6(4), 305-318. https://doi.org/10.1016/j.conbuildmat.2014.12.049.
- Saleem, M. and Nasir, M. (2016), "Bond evaluation of steel bolts for concrete subjected to impact loading", Mater. Struct., 49(9), 3635-3646. https://doi.org/10.1617/s11527-015-0745-9.
- Salesa, A., Perez, B.J.A., Esteban, L.M., Vicente, V.R. and Orna, C.M. (2017), "Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects", Constr. Build. Mater., 153, 364-373. https://doi.org/10.1016/j.conbuildmat.2017.07.087.
- Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray mu CT images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010.
- Smith, J., Cusatis, G., Pelessone, D., Landis, E., O'Daniel, J. and Baylot, J. (2014), "Discrete modeling of ultra-high-performance concrete with application to projectile penetration", Int. J. Impact Eng., 65, 13-32. https://doi.org/10.1016/j.ijimpeng.2013.10.008.
- Tahmouresi, B., Koushkbaghi, M., Monazami, M., Abbasi, M.T. and Nemati, P. (2019), "Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete", Comput Concrete, 24(3), 193-206. https://doi.org/10.12989/cac.2019.24.3.193.
- Tehrani, F.F., Absi, J., Allou, F. and Petit, C. (2013), "Investigation into the impact of the use of 2D/3D digital models on the numerical calculation of the bituminous composites' complex modulus", Comput. Mater. Sci., 79, 377-389. https://doi.org/10.1016/j.commatsci.2013.05.054.
- Wang, X.F., Yang, Z.J. and Jivkov, A.P. (2015), "Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study", Constr. Build. Mater., 80, 262-272. https://doi.org/10.1016/j.conbuildmat.2015.02.002.
- Wang, X.F., Yang, Z.J. and Yates, J.R. (2015), "Jivkov, AP. Zhang, C. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores", Constr. Build. Mater., 75, 35-45. https://doi.org/10.1016/j.conbuildmat.2014.09.069.
- Wittmann, F.H. and Roelfstra, P.E. (1988), "Drying of concrete: An application of the 3L approach", Nucl. Eng. Des., 105, 185-198. https://doi.org/10.1016/0029-5493(88)90339-1.
- Wu, J., Ning, J.G. and Ma, T.B. (2017), "The dynamic response and failure behavior of concrete subjected to new spiral projectile impacts", Eng. Fail. Anal., 79, 547-564. https://doi.org/10.1016/j.engfailanal.2017.05.037.
- Xiang, Y., Fang, Z. and Fang, Y.W. (2017), "Single and multiple impact behavior of CFRP cables under pretension", Constr. Build. Mater., 140, 521-533. https://doi.org/10.1016/j.conbuildmat.2017.02.112.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling", Constr. Build. Mater., 68, 158-171. https://doi.org/10.1016/j.conbuildmat.2014.06.033.
- Zhang, J., Li, J. and Woody, J. (2016), "3D elastoplastic damage model for concrete based on novel decomposition of stress". Int. J. Solid. Struct., 94-95, 125-137. https://doi.org/10.1016/j.ijsolstr.2016.04.038.
- Zhang, Z.H., Cao, F., Yang, J.Y. and He, Z.G. (2018), "Experiment on natural frequency change of reinforced concrete members under low cycle loading", Shock Vib., 2018, 6504519. https://doi.org/10.1155/2018/6504519.
- Zhou, W., Tang, L.W., Liu, X.H., Ma, G. and Chen, M.X. (2016), "Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model". Int. J. Impact Eng., 95, 165-175. https://doi.org/10.1016/j.ijimpeng.2016.05.003.