DOI QR코드

DOI QR Code

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading

  • Wang, Lixiao (School of Mechanical Engineering, Changshu Institution of Technology) ;
  • Chen, Qidong (School of Mechanical Engineering, Changshu Institution of Technology) ;
  • Liu, Xin (School of Mechanical Engineering, Changshu Institution of Technology) ;
  • Zhang, Bin (School of Mechanical Engineering, Changshu Institution of Technology) ;
  • Shen, Yichen (School of Mechanics, Soochow University)
  • Received : 2019.11.26
  • Accepted : 2020.05.18
  • Published : 2020.07.25

Abstract

Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (51705037).

References

  1. Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. http://dx.doi.org/10.12989/cac.2016.18.2.155.
  2. Abyaneh, S.D., Wong, H.S. and Buenfeld, N.R. (2013), "Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes", Comput. Mater. Sci., 78, 63-73. https://doi.org/10.1016/j.commatsci.2013.05.024.
  3. Al-Salloum, Y., Almusallam, T., Ibrahim, S.M., Abbas, H. and Alsayed, S. (2015), "Rate dependent behavior and modeling of concrete based on SHPB experiments", Cement Concrete Compos., 55, 34-44. https://doi.org/10.1016/j.cemconcomp.2014.07.011.
  4. Alexandre, B.J. and Gomes, A. (2013), "Compressive behavior and failure modes of structural lightweight aggregate concrete - Characterization and strength prediction", Mater. Des., 46, 832-841. https://doi.org/10.1016/j.matdes.2012.11.004.
  5. Anil, O., Durucan, C., Erdem, R.T. and Yorgancilar, M.A. (2016), "Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading", Constr. Build. Mater., 125, 94-104. https://doi.org/10.1016/j.conbuildmat.2016.08.028.
  6. Aoude, H., Dagenais, F.P., Burrell, R.P. and Saatcioglu, M. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under blast loading", Int. J. Impact Eng., 80, 185-202. https://doi.org/10.1016/j.ijimpeng.2015.02.006.
  7. Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.
  8. Bazant, Z.P. and Tabbara, M.R. (1990), "Random particle models for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).
  9. Cao, L., Liu, J.P. and Chen, Y.F. (2018), "Vibration performance of arch prestressed concrete truss girder under impulse excitation", Eng. Struct., 165, 386-395. https://doi.org/10.1016/j.engstruct.2018.03.050.
  10. Chen, J.Q., Wang, H. and Li, L. (2017), "Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures", Int. J. Pave. Eng., 9(18), 824-836. https://doi.org/10.1080/10298436.2015.1066005.
  11. Chen, J.Q., Wang, H., Dan, H.C. and Xie, Y.J. (2018), "Random modeling of three-dimensional heterogeneous microstructure of asphalt concrete for mechanical analysis", J. Eng. Mech., 9, 144. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001505.
  12. Du, X.L., Jin, L. and Ma, G.W. (2014), "Numerical simulation of dynamic tensile-failure of concrete at meso-scale", Int. J. Impact Eng., 66, 5-17. https://doi.org/10.1016/j.ijimpeng.2013.12.005.
  13. Ganesan, N., Raj, J.B. and Shashikala, A.P. (2013), "Flexural fatigue behavior of self compacting rubberized concrete", Constr. Build. Mater., 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077.
  14. Gholipour, G., Zhang, C.W. and Mousavi, A.A. (2019), "Loading rate effects on the responses of simply supported RC beams subjected to the combination of impact and blast loads", Eng. Struct., 201, 109837. https://doi.org/10.1016/j.engstruct.2019.109837.
  15. Gultop, T., Yilmaz, M.C. and Alyavuz, B. (2015), "An analytical investigation of rigid plastic beams under impact loading", J. Facul. Eng. Arch. Gazi Univ., 1(30), 87-94.
  16. Heravi, A.A., Curosu, I. and Mechtcherine, V. (2020), "A gravity-driven split Hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading", Cement Concrete Compos., 105, UNSP 103430. https://doi.org/10.1016/j.cemconcomp.2019.103430
  17. Huang, Y.J., Yang, Z.J., Ren, W.Y., Liu, G.H. and Zhang, C.Z. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solid. Struct., 67-68, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
  18. Jin, R.Y. and Chen, Q. (2019), "Overview of concrete recycling legislation and practice in the United States", J. Constr. Eng. Manage., 4, 145. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001630.
  19. Kalinowska, W.K., Pawluczuk, E. and Boltryk, M. (2020), "Waste-free technology for recycling concrete rubble", Constr. Build. Mater., 234, UNSP 117407. https://doi.org/10.1016/j.conbuildmat.2019.117407.
  20. Kaliyavaradhan, S.K. and Ling, T.C. (2017), "Potential of CO2 sequestration through construction and demolition (C&D) waste -An overview", J. $CO_2$ Utiliz., 20, 234-242. https://doi.org/10.1016/j.jcou.2017.05.014.
  21. Kim, J.R., Kwak, H.G. and Kim, B.S. (2019), "Finite element analyses and design of post-tensioned anchorage zone in ultra-high-performance concrete beams", Adv. Struct. Eng., 22(2), 323-336. https://doi.org/10.1177/1369433218787727.
  22. Kim, K., Bolander, J.E. and Lim, Y.M. (2013), "Failure simulation of RC structures under highly dynamic conditions using random lattice models", Comput. Struct., 125, 127-136. https://doi.org/10.1016/j.compstruc.2013.04.007.
  23. Kwak, H.G. and Gang, H.G. (2015), "An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions", Int. J. Impact Eng., 86, 84-95. https://doi.org/10.1016/j.ijimpeng.2015.07.008.
  24. Li, Y., Algassem, O. and Aoude, H. (2018), "Response of high-strength reinforced concrete beams under shock-tube induced blast loading", Constr. Build. Mater., 189, 420-437. https://doi.org/10.1016/j.conbuildmat.2018.09.005.
  25. Liang, S.X., Chen, J.S., Li, J., Lin, S.P., Chi, S.W., Hillman, M., Roth, M. and Heard, W. (2017), "Numerical investigation of statistical variation of concrete damage properties between scales", Int. J. Fract., 208(1-2), 97-113. https://doi.org/10.1007/s10704-017-0217-z.
  26. Liu, H.F. and Ning, J.G. (2009), "Mechanical behavior of reinforced concrete subjected to impact loading", Mech. Mater., 41(12), 1298-1308. https://doi.org/10.1016/j.mechmat.2009.05.008.
  27. Liu, H.F., Fu, J. and Ning, J.G. (2016), "Experimental study on the dynamic mechanical properties of reinforced concrete under shock loading", Acta Mechanica Solida Sinica, 29(1), 253-261. https://doi.org/10.1016/S0894-9166(16)60004-6.
  28. Liu, H.K., Ren, X.D., Liang, S.X. and Li, J. (2019), "Physical mechanism of concrete damage under compression", Mater. (Basel, Switzerland), 12(20), 3295. https://doi.org/10.3390/ma12203295.
  29. Lotfi, S., Eggimann, M., Wagner, E., Mroz, R. and Deja, J. (2015), "Performance of recycled aggregate concrete based on a new concrete recycling technology", Constr. Build. Mater., 95, 243-256. https://doi.org/10.1016/j.conbuildmat.2015.07.021.
  30. Matzenmiller, A., Lubliner, J. and Taylor, R.L. (1995), "A constitutive model for anisotropic damage in fiber-composites", Mech. Mater., 20(2), 125-152. https://doi.org/10.1016/0167-6636(94)00053-0.
  31. Nakahata, K., Kawamura, G., Yano, T. and Hirose, S. (2015), "Three-dimensional numerical modeling of ultrasonic wave propagation in concrete and its experimental validation", Constr. Build. Mater., 78, 217-223. https://doi.org/10.1016/j.conbuildmat.2014.12.049.
  32. Nam, J.W., Choi, H.J., Kim, J.H.J., Kim, I.S., Yi, N.H. and Kim, H.J. (2009), "Blast analysis of concrete arch structures for FRP retrofitting design", Comput. Concrete, 6(4), 305-318. https://doi.org/10.1016/j.conbuildmat.2014.12.049.
  33. Saleem, M. and Nasir, M. (2016), "Bond evaluation of steel bolts for concrete subjected to impact loading", Mater. Struct., 49(9), 3635-3646. https://doi.org/10.1617/s11527-015-0745-9.
  34. Salesa, A., Perez, B.J.A., Esteban, L.M., Vicente, V.R. and Orna, C.M. (2017), "Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects", Constr. Build. Mater., 153, 364-373. https://doi.org/10.1016/j.conbuildmat.2017.07.087.
  35. Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray mu CT images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010.
  36. Smith, J., Cusatis, G., Pelessone, D., Landis, E., O'Daniel, J. and Baylot, J. (2014), "Discrete modeling of ultra-high-performance concrete with application to projectile penetration", Int. J. Impact Eng., 65, 13-32. https://doi.org/10.1016/j.ijimpeng.2013.10.008.
  37. Tahmouresi, B., Koushkbaghi, M., Monazami, M., Abbasi, M.T. and Nemati, P. (2019), "Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete", Comput Concrete, 24(3), 193-206. https://doi.org/10.12989/cac.2019.24.3.193.
  38. Tehrani, F.F., Absi, J., Allou, F. and Petit, C. (2013), "Investigation into the impact of the use of 2D/3D digital models on the numerical calculation of the bituminous composites' complex modulus", Comput. Mater. Sci., 79, 377-389. https://doi.org/10.1016/j.commatsci.2013.05.054.
  39. Wang, X.F., Yang, Z.J. and Jivkov, A.P. (2015), "Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study", Constr. Build. Mater., 80, 262-272. https://doi.org/10.1016/j.conbuildmat.2015.02.002.
  40. Wang, X.F., Yang, Z.J. and Yates, J.R. (2015), "Jivkov, AP. Zhang, C. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores", Constr. Build. Mater., 75, 35-45. https://doi.org/10.1016/j.conbuildmat.2014.09.069.
  41. Wittmann, F.H. and Roelfstra, P.E. (1988), "Drying of concrete: An application of the 3L approach", Nucl. Eng. Des., 105, 185-198. https://doi.org/10.1016/0029-5493(88)90339-1.
  42. Wu, J., Ning, J.G. and Ma, T.B. (2017), "The dynamic response and failure behavior of concrete subjected to new spiral projectile impacts", Eng. Fail. Anal., 79, 547-564. https://doi.org/10.1016/j.engfailanal.2017.05.037.
  43. Xiang, Y., Fang, Z. and Fang, Y.W. (2017), "Single and multiple impact behavior of CFRP cables under pretension", Constr. Build. Mater., 140, 521-533. https://doi.org/10.1016/j.conbuildmat.2017.02.112.
  44. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling", Constr. Build. Mater., 68, 158-171. https://doi.org/10.1016/j.conbuildmat.2014.06.033.
  45. Zhang, J., Li, J. and Woody, J. (2016), "3D elastoplastic damage model for concrete based on novel decomposition of stress". Int. J. Solid. Struct., 94-95, 125-137. https://doi.org/10.1016/j.ijsolstr.2016.04.038.
  46. Zhang, Z.H., Cao, F., Yang, J.Y. and He, Z.G. (2018), "Experiment on natural frequency change of reinforced concrete members under low cycle loading", Shock Vib., 2018, 6504519. https://doi.org/10.1155/2018/6504519.
  47. Zhou, W., Tang, L.W., Liu, X.H., Ma, G. and Chen, M.X. (2016), "Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model". Int. J. Impact Eng., 95, 165-175. https://doi.org/10.1016/j.ijimpeng.2016.05.003.