• 제목/요약/키워드: Damage Evaluation

검색결과 2,612건 처리시간 0.031초

Modeling and damage detection for cracked I-shaped steel beams

  • Zhao, Jun;DeWoIf, John T.
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.131-146
    • /
    • 2007
  • This paper presents the results of a study to show how the development of a crack alters the structural behavior of I-shaped steel beams and how this can be used to evaluate nondestructive evaluation techniques. The approach is based on changes in the dynamic behavior. An approximate finite element model for a cracked beam with I-shaped cross-section is developed based on a simplified fracture model. The model is then used to review different damage cases. Damage detection techniques are studied to determine their ability to identify the existence of the crack and to identify its location. The techniques studied are the coordinate modal assurance criterion, the modal flexibility, and the state and the slope arrays.

Fatigue Assessment of Very Large Container Ships Considering Springing Effect Based on Stochastic Approach

  • Jung, Byoung-Hoon;Ahn, In-Gyu;Seo, Sun-Kee;Kim, Beom-Il
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.120-127
    • /
    • 2020
  • Evaluation of fatigue strength considering the springing effect of very large container ships is crucial in the design stage. In this study, we established a fatigue strength evaluation method considering a linear springing component in the frequency domain. Based on a three-dimensional global model, a fluid-structure interaction analysis was performed and the modal superposition method was applied to determine the hot spot stress at the hatch corner of very large container ships. Fatigue damage was directly estimated using the stress transfer function with a linear springing response. Furthermore, we proposed a new methodology to apply the springing effect to fatigue damage using hull girder loads. Subsequently, we estimated the fatigue damage contribution due to linear springing components along the ship length. Finally, we discussed the practical application of the proposed methods.

공공시설물 잠재홍수피해지수 체계 개발 및 평가 (Development and Evaluation of Potential Flood Damage Index for Public Facilities)

  • 김길호;백승협;정영훈;김경탁
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.97-106
    • /
    • 2016
  • Since public facilities have high property values and are directly exposed to the flood hazard, they account for the highest share of disaster damages compared to other assets such as housing, industry, vehicle and agriculture in case of floods. Therefore, this study was conducted to develop and suggest the potential flood damage index for public facilities to evaluate potential flood damage of specific local government directly or indirectly as a tool for decision-making related to flood prevention, maintenance, management, and budget allocation. The flood damage assessment system proposed in this study was evaluated in 231 local governments nationwide. Evaluation results showed that higher values were obtained in Seoul metropolitan government, Gyeonggi-do (province), coastal areas in Gyeongsangnam-do (province), and Jeju island.

해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘 (Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment)

  • 김영복;김성종
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

고속도로 방음벽 유지관리를 위한 방음벽 노후도 평가 방안 (Deterioration Evaluation Method of Noise Barriers for Managements of Highway)

  • 김상태;신일형;김경수;김다애;김흥래;임자혜;이재준
    • 환경영향평가
    • /
    • 제28권4호
    • /
    • pp.387-399
    • /
    • 2019
  • 본 연구에서는 고속도로 방음벽을 대상으로 방음벽의 손상유형 분류 및 손상등급 체계를 마련하고 이를 반영한 방음벽 노후도 평가기법 개발을 목표로 하였다. 방음벽이 방음판, 기초, 지주로 구성되어 있고 10종의 다양한 재질이 활용되고 있는 방음판은 단일 또는 혼합형으로 사용되고 있으며, 방음판의 손상은 단일 또는 복합적인 손상을 나타내는 특징을 나타내고 있어 이러한 방음벽의 특징을 반영할 수 있는 방음벽 노후도 평가모델을 개발하고자 하였다. 방음벽에 주로 사용되고 있는 재질을 금속재, 플라스틱재, 목재, 투명재, 콘크리트재의 재질유형으로 나누고 또한, 각 재질별 손상유형을 부식, 변색, 변형, 깨짐, 탈리로 분류하여 방음벽의 손상유형을 방음벽 구성부재와 재질에 따라 세분화하였다. 방음벽 주요부위별로 각 손상유형별 손상등급을 양호, 경미, 보통, 심함으로 구분하여 방음판, 지주, 기초의 손상등급을 평가, 이를 바탕으로 부위별 노후도를 평가하여 가중평균을 통한 방음벽 전체의 노후도를 평가하는 방식을 통해서 종합적인 방음벽 노후화 정도를 평가하였다. 단일형 또는 혼합형 방음판을 사용하는 방음벽의 노후도 평가는 물론, 손상유형이 단일형 뿐만 아니라 복합형으로 나타나는 방음벽에 대해서도 체계적인 평가가 가능한 노후도 평가 기법을 개발하였으며, 이러한 평가시스템을 통하여, 현재 설치되어 있는 방음시설의 노후화 현황을 체계적으로 파악함은 물론, 이를 토대로 방음벽의 보수 및 개량을 위한 효율적인 유지관리 계획 및 시행에 활용이 가능할 것으로 판단된다.

저층 철근콘크리트 건물의 간이 내진성능 평가법 제안 - Part 1. 내진성능평가의 개념 - (A Proposal of Rapid-Screening Method for Seismic Capacity Evaluation of Low-Rise R/C Buildings - Part 1. Concept of Seismic Capacity Evaluation -)

  • 이강석;김용인;위정두;황기태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.463-464
    • /
    • 2009
  • 본 연구에서는 전단 및 휨파괴형 부재가 혼합된 저층 철근콘크리트 거물의 내진성능을 간편하면서도 효율적으로 평가가 가능한 간이 내진성능 평가법을 제안함과 동시에 단시간 내에 약산적으로 내진성능이 우수한 건물을 우선적으로 선별이 가능하도록 피해도 판정식과 내진성능 평가식을 제안하여 정략적으로 평가가 가능한 내진성능 평가표를 개발하였다. 상기 평가법을 이용하면, 내진성능 평가점수와 그에 대응하는 지진손상도가 추정가능하여 간편 효율적으로 내진성능을 평가할 수 있다.

  • PDF

콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발 (Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation)

  • 남우석;정현준;박경한;김철민;김규선
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.107-116
    • /
    • 2022
  • 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다.

Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames

  • Heo, YeongAe;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권3호
    • /
    • pp.175-182
    • /
    • 2013
  • A damage-based approach for the performance-based seismic assessment of reinforced concrete frame structures is proposed. A new methodology for structural damage assessment is developed that utilizes response information at the material level in each section fiber. The concept of the damage evolution is analyzed at the section level and the computed damage is calibrated with observed experimental data. The material level damage parameter is combined at the element, story and structural level through the use of weighting factors. The damage model is used to compare the performance of two typical 12-story frames that have been designed for different seismic requirements. A series of nonlinear time history analyses is carried out to extract demand measures which are then expressed as damage indices using the proposed model. A probabilistic approach is finally used to quantify the expected seismic performance of the building.