• Title/Summary/Keyword: Damage Distribution

Search Result 1,454, Processing Time 0.025 seconds

Structural damage distribution induced by Wenchuan Earthquake on 12th May, 2008

  • Jia, Junfeng;Song, Nianhua;Xu, Zigang;He, Zizhao;Bai, Yulei
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Based on the reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, China, structural damage characteristics and the spatial distribution of structural damage are investigated, and the possible reasons for the extraordinary features are discussed with consideration of the influence of urban historical evolution and spatial variation of earthquake motions. Firstly, the urban plan and typical characteristics of structural seismic damage are briefly presented and summarized. Spatial distribution of structural damage is then comparatively analyzed by classifying all surveyed buildings in accordance with different construction age, considering the influence of seismic design code on urban buildings. Finally, the influences of evolution of seismic design code, topographic condition, local site and distance from fault rupture on spatial distribution of structural damage are comprehensively discussed. It is concluded that spatial variation of earthquake motions, resulting from topography, local site effect and fault rupture, are very important factor leading to the extraordinary spatial distribution of building damage except the evolution of seismic design codes. It is necessary that the spatial distribution of earthquake motions should be considered in seismic design of structures located in complicated topography area and near active faults.

Cumulative damage calculation model for water distribution system with increasing service year (사용연수 증가에 따른 상수관망의 누적피해도 산정 모형)

  • Kim, Hyeong Gi;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.561-569
    • /
    • 2024
  • In this study, a damage estimation model for water distribution system was developed to quantitatively calculate the cumulative damage of water distribution system. And it was applied to real water distribution system to analyze the cumulative damage of water distribution system. To analyze the overall damage rate of the water distribution system, the cumulative damage analysis formula of individual pipes was established. And the aging index that affects the damage rate was analyzed using MCS (Monte Carlo Simulation), and Romanoff's measured data was used to calculate the thickness change due to corrosion. In addition, a cumulative damage estimation model was applied to unit network such as small and medium block network, and the cumulative damage of the unit network for up to 50 years was calculated. From the results, it was found that the cumulative damage rate is increased from 7% to 79% for the water distribution system of Naeduk 1-dong, Cheongju City, as the age of the pipeline is increased from 20 years to 50 years.

Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution

  • Ahmadi, Hamid Reza;Anvari, Diana
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.699-709
    • /
    • 2018
  • With increasing traffic volumes and rising vehicle traffic, especially in cities, the number of pedestrian bridges has also increased significantly. Like all other structures, pedestrian bridges also suffer damage. In order to increase the safety of pedestrians, it is necessary to identify existing damage and to repair them to ensure the safety of the bridge structures. Owing to the shortcomings of local methods in identifying damage and in order to enhance the reliability of detection and identification of structural faults, signal methods have seen significant development in recent years. In this research, a new methodology, based on cone-shaped kernel distribution with a new damage index, has been used for damage detection in pedestrian truss bridges. To evaluate the proposed method, the numerical models of the Warren Type steel truss and the Arregar steel footbridge were used. Based on the results, the proposed method and damage index identified the damage and determined its location with a high degree of precision. Given the ease of use, the proposed method can be used to identify faults in pedestrian bridges.

Damage assessment of frame structure using quadratic time-frequency distributions

  • Chandra, Sabyasachi;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.411-425
    • /
    • 2014
  • This paper presents the processing of nonlinear features associated with a damage event by quadratic time-frequency distributions for damage identification in a frame structure. A time-frequency distribution is a function which distributes the total energy of a signal at a particular time and frequency point. As the occurrence of damage often gives rise to non-stationary, nonlinear structural behavior, simultaneous representation of the dynamic response in the time-frequency plane offers valuable insight for damage detection. The applicability of the bilinear time-frequency distributions of the Cohen class is examined for the damage assessment of a frame structure from the simulated acceleration data. It is shown that the changes in instantaneous energy of the dynamic response could be a good damage indicator. Presence and location of damage can be identified using Choi-Williams distribution when damping is ignored. However, in the presence of damping the Page distribution is more effective and offers better readability for structural damage detection.

The Cluster Damage in a $extsc{k}th-Order$ Stationary Markov Chain

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.235-251
    • /
    • 1999
  • In this paper we examine extremal behavior of a $textsc{k}$th-order stationary Markov chain {X\ulcorner} by considering excesses over a high level which typically appear in clusters. Excesses over a high level within a cluster define a cluster damage, i.e., a normalized sum of all excesses within a cluster, and all excesses define a damage point process. Under some distributional assumptions for {X\ulcorner}, we prove convergence in distribution of the cluster damage and obtain a representation for the limiting cluster damage distribution which is well suited for simulation. We also derive formulas for the mean and the variance of the limiting cluster damage distribution. These results guarantee a compound Poisson limit for the damage point process, provided that it is strongly mixing.

  • PDF

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

A Probabilistic Analysis for Fatigue Cumulative Damage and Fatigue Life in CFRP Composites Containing a Circular Hole (원공을 가진 CFRP 복합재료의 피로누적손상 및 피로수명에 대한 확률적 해석)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1915-1926
    • /
    • 1995
  • The Fatigue characteristics of 8-harness satin woven CFRP composites with a circular hole are experimentally investigated under constant amplitude tension-tension loading. It is found in this study that the fatigue damage accumulation behavior is very random and history-independent, and the fatigue cumulative damage is linearly related with the mean number of cycles to a specified damage state. From these results, it is known that the fatigue characteristics of CFRP composites satisfy the basic assumptions of Markov chain theory and the parameter of Markov chain model can be determined only by mean and variance of fatigue lives. The predicted distribution of the fatigue cumulative damage using Markov chain model shows a good agreement with the test results. For the fatigue life distribution, Markov chain model makes similar accuracy to 2-parameter Weibull distribution function.

A Study On the Retention Time Distribution with Plasma Damage Effect

  • Yi Jae Young;Szirmay Laszlo;Yi Cheon Hee
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.460-462
    • /
    • 2004
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. There are several leakage current mechanisms in which the stored data disappears. The mechanisms of data disappear is as follow, 1 )Junction leakage current between the junction, 2) Junction leakage current from the capacitor node contact, 3)Sub-threshold leakage current if the transfer transistor is affected by gate etch damage etc. In this paper we showed the plasma edge damage effect to find out data retention time effectiveness. First we measured the transistor characteristics of forward and reverse bias. And junction leakage characteristics are measured with/without plasma damage by HP4145. Finally, we showed the comparison TRET with etch damage, damage_cure_RTP and hydrogen_treatment. As a result, hydrogen_treatment is superior than any other method in a curing plasma etch damage side.

  • PDF

Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed (일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.130-139
    • /
    • 2017
  • The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.