• Title/Summary/Keyword: Dam-break problem

Search Result 30, Processing Time 0.025 seconds

Application of Risk Indexes for Classifying Vulnerable Zone and Planning Structural Alternative in Preparation for Debris Flow Disaster (토사재해 취약 지역 분류 및 구조적 대안 수립을 위한 위험지표 적용)

  • Oh, Seung Myeong;Song, Chang Geun;Jung, Min Hyung;Seong, Joo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.112-116
    • /
    • 2017
  • This study applied risk indexes to the disaster flow event occurred at Mt. Umyeon region in 2011. A 2D hydrodynamic model was employed to calculate flow characteristics, and the model was validated against two dam break flow problems conducted by Bellos and EU CADAM project. The model performance was shown to be satisfactory. In order to determine which index is more appropriate to assess the vulnerability of debris flow, 3 risk indexes (FII, FHR and VDI) were considered. It was found that VDI, which determines the risk level only by the velocity factor, consistently predicted the risk level corresponding to 6 because the velocity range was widely organized. However, in the case of FII and FHR, the risk was reasonably quantified due to combined consideration of significant factors of flow velocity and debris thickness. Therefore, FII and FHR are expected to be more accurate than VDI. However, two indexes still need to be improved to include major factors such as debris density or material properties.

Application of the Level Set Method for Free Surface Modeling (자유수면의 모의를 위한 레블셑V 기법의 적용)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.451-455
    • /
    • 2010
  • Hydraulics usually deals with flows with free surface. When the surface curvature is small, the assumption of hydrostatic pressure distribution is enough. However, in the case, when the curvature is big, the non-hydrostatic pressure distribution should be taken into account and the Navier-Stokes equations should be employed instead of the depth-averaged shallow water equations. For the simulation of two immiscible fluids with different characteristics (e.g. water and air, water and oil), the level set method is selected for this purpose. The developed model is applied to classical dam break problem and the computational results are compared with the experimental data. The effectiveness of the developed model is confirmed.

Numerical Analysis of Free-Surface Flows Using Improved Adaptable Surface Particle Method Based on Grid System (개선된 격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.90-96
    • /
    • 2021
  • In this study, the method of determining the state of grid points in the adaptable surface particle method based on grid system developed as a free-surface tracing method was improved. The adaptable surface particle method is a method of determining the state of the grid point according to the shape of the free-surface and obtaining the intersection of the given free-surface and grid line where the state of the grid point changes. It is difficult to determine the state of grid points in the event of rapid flow, such as collision or separation of free-surfaces, and this study suggests a method for determining the state of current grid points using the state of surrounding grid points where the state of grid point are known. A grid layer value was assigned sequentially to a grid away from the free-surface, centering on the boundary cell where the free-surface exists, to identify the connection information that the grid was separated from the free-surface, and to determine the state of the grid point sequentially from a grid away from the free-surface to a grid close to the free-surface. To verify the improved method, a numerical analysis was made on the problem of dam break in which a sudden collision of free-surface occurred and the results were compared, and the results were relatively reasonable.

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Application of POM to the River Flow (POM의 하천 흐름 해석에의 적용)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • During typhoon periods, coastal regions are often directly flooded by typhoon-surges. There are also many cases where coastal regions are inundated by river inundations or dam breaks. However, most studies on coastal flooding by typhoons have been restricted to cases involving the sea. Flooding by river inundation has been excluded in those studies. Usually ocean numerical models are not applied to river flow because the governing equations for ocean flow and river flow are not the same. For a coastal flooding simulation with river inundation, POM, the three-dimensional numerical ocean model, was applied to the popular river flow problems, dam-break problem, and flows over a spillway. The simulated results showed good agreement with other numerical simulations and measured data, suggesting the possibility of using POM in coastal flooding simulations involving direct coastal surges and river inundations.

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Finite-Volume Model for Shallow-Water Flow over Uneven Bottom (고르지 않은 바닥을 지나는 천수 흐름에 대한 유한체적 모형)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.139-153
    • /
    • 2013
  • For analyzing shallow-water flows over the uneven bottom, the HLLL scheme and the divergence form for bed slope source term (DFB) technique, respectively were applied to the flux gradient and the bottom gradient source terms in a finite-volume model for the shallow water equations. And also the model incorporated the volume/free-surface relationship (VFR) to consider the partially submerged cells (PSC). It was identified that a simpler version of the weighted surface-depth gradient method in the MUSCL was equivalent to the original one in the accuracy for 1D steady flows. It was verified that the flux gradient term and the bottom gradient source term were well-balanced exactly by the VFR for the 1D PSC. The VFR for the triangular PSC settled the problem which the governing equations were not well-balanced by the DFB technique for the 2D PSC. There were good agreements in simulations and experiments for 2D dam-break flows over a triangular sill and a round bump. In addition, the partial dam-break flow was successfully simulated for flooding of roughnesses in an irregular bottom as well as a sloping one. Therefore, this model is expected to be applied to the real river with uneven topography.

Development of the sediment transport model using GPU arithmetic (GPU 연산을 활용한 유사이송 예측모형 개발)

  • Noh, Junsu;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.431-438
    • /
    • 2023
  • Many shorelines are facing the beach erosion. Considering the climate change and the increment of coastal population, the erosion problem could be accelerated. To address this issue, developing a sediment transport model for rapidly predicting terrain change is crucial. In this study, a sediment transport model based on GPU parallel arithmetic was introduced, and it was supposed to simulate the terrain change well with a higher computing speed compared to the CPU based model. We also aim to investigate the model performance and the GPU computational efficiency. We applied several dam break cases to verified model, and we found that the simulated results were close to the observed results. The computational efficiency of GPU was defined by comparing operation time of CPU based model, and it showed that the GPU based model were more efficient than the CPU based model.

MOMENT-OF-FLUID METHOD FOR FREE SURFACE FLOW SIMULATION USING UNSTRUCTURED MESHES (비정렬 격자상에서 Moment-of-Fluid 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.65-67
    • /
    • 2011
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. The MOF method uses moment data, namely the material volume fraction, as well as the centroid, for a more accurate representation of the material configuration, interfaces and concomitant volume advection. In this paper, unstructured mesh extension of the MOF method is to be presented. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two materials. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.