DOI QR코드

DOI QR Code

Development of the sediment transport model using GPU arithmetic

GPU 연산을 활용한 유사이송 예측모형 개발

  • Noh, Junsu (Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University) ;
  • Son, Sangyoung (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 노준수 (고려대학교 미래건설환경융합연구소) ;
  • 손상영 (고려대학교 건축사회환경공학부)
  • Received : 2023.06.14
  • Accepted : 2023.07.12
  • Published : 2023.07.31

Abstract

Many shorelines are facing the beach erosion. Considering the climate change and the increment of coastal population, the erosion problem could be accelerated. To address this issue, developing a sediment transport model for rapidly predicting terrain change is crucial. In this study, a sediment transport model based on GPU parallel arithmetic was introduced, and it was supposed to simulate the terrain change well with a higher computing speed compared to the CPU based model. We also aim to investigate the model performance and the GPU computational efficiency. We applied several dam break cases to verified model, and we found that the simulated results were close to the observed results. The computational efficiency of GPU was defined by comparing operation time of CPU based model, and it showed that the GPU based model were more efficient than the CPU based model.

전 세계적으로 연안침식 문제가 대두됨에 따라 많은 해안선이 지형변화를 겪고 있다. 기후변화 및 해안인구증가로 미루어 볼 때 그 현상은 가속화될 수 있으며, 이에 대응하기 위해 신속하게 지형변화를 모의할 수 있는 유사이송 예측모형 개발의 중요성이 강조된다. 본 연구에서는 GPU (Graphics Processing Unit)를 기반으로 한 유사이송 예측모형을 제안하였으며, GPU 병렬연산을 활용함으로써 기존의 CPU 기반모형 대비 더욱 개선된 속도로 지형변화를 모의할 수 있도록 모형이 개발되었다. 개발된 모형에 대해 수치모형 성능과 GPU 연산효율에 초점을 맞추어 분석을 수행하였다. 모형의 성능검증을 위해 Dam-break 수리실험에 대해 수치모의를 수행하였으며, 모의결과가 관측된 실험데이터와 잘 일치하는 것을 확인하였다. GPU 연산효율은 CPU 기반모형과 수치모의 연산시간을 비교하여 분석하였으며, 개발된 GPU 기반모형이 연산시간의 효율이 상당히 우수한 것으로 확인되었다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2019R1A2C1089109).

References

  1. Alexandrakis, G., Manasakis, C., and Kampanis, N.A. (2015). "Valuating the effects of beach erosion to tourism revenue. A management perspective." Ocean & Coastal Management, Vol. 111, pp. 1-11. https://doi.org/10.1016/j.ocecoaman.2015.04.001
  2. Amoudry, L.O., and Souza, A.J. (2011). "Deterministic coastal morphological and sediment transport modeling: A review and discussion." Reviews of Geophysics, Vol. 49, No. 2, 21.
  3. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., and Perthame, B.T. (2004). "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows." SIAM Journal on Scientific Computing, Vol. 25, No. 6, pp. 2050-2065. https://doi.org/10.1137/S1064827503431090
  4. Barragan, J.M., and De Andres, M. (2015). "Analysis and trends of the world's coastal cities and agglomerations." Ocean & Coastal Management, Vol. 114, pp. 11-20.
  5. Brown, A.C., and McLachlan, A. (2002). "Sandy shore ecosystems and the threats facing them: some predictions for the year 2025." Environmental Conservation, Vol. 29, No. 1, pp. 62-77. https://doi.org/10.1017/S037689290200005X
  6. Cao, Z., Pender, G., Wallis, S., and Carling, P. (2004). "Computational dam-break hydraulics over erodible sediment bed." Journal of Hydraulic Engineering, Vol. 130, No. 7, pp. 689-703. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689)
  7. Feagin, R.A., Sherman, D.J., and Grant, W.E. (2005). "Coastal erosion, global sea level rise, and the loss of sand dune plant habitats." Frontiers in Ecology and the Environment, Vol. 3, No. 7, pp. 359-364. https://doi.org/10.1890/1540-9295(2005)003[0359:CEGSRA]2.0.CO;2
  8. Fraccarollo, L., and Capart, H. (2002). "Riemann wave description of erosional dam-break flows." Journal of Fluid Mechanics, Vol. 461, pp. 183-228. https://doi.org/10.1017/S0022112002008455
  9. Goutiere, L., Soares-Frazao, S., and Zech, Y. (2011). "Dam-break flow on mobile bed in abruptly widening channel: experimental data." Journal of Hydraulic Research, Vol. 49, No. 3, pp. 367-371. https://doi.org/10.1080/00221686.2010.548969
  10. Guan, M., Ahilan, S., Yu, D., Peng, Y., and Wright, N. (2018). "Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond." Journal of Hydrology, Vol. 556, pp. 87-99. https://doi.org/10.1016/j.jhydrol.2017.11.006
  11. Guan, M., Wright, N.G., and Sleigh, P.A. (2014). "2D process-based morphodynamic model for flooding by noncohesive dyke breach." Journal of Hydraulic Engineering, Vol. 140, No. 7, 04014022.
  12. Hou, J., Kang, Y., Hu, C., Tong, Y., Pan, B., and Xia, J. (2020). "A GPU-based numerical model coupling hydrodynamical and morphological processes." International Journal of Sediment Research, Vol. 35, No. 4, pp. 386-394. https://doi.org/10.1016/j.ijsrc.2020.02.005
  13. Juez, C., Lacasta, A., Murillo, J., and Garcia-Navarro, P. (2016). "An efficient GPU implementation for a faster simulation of unsteady bed-load transport." Journal of Hydraulic Research, Vol. 54, No. 3, pp. 275-288. https://doi.org/10.1080/00221686.2016.1143042
  14. Kim, D.H., and Lee, S.O. (2012). "Stable numerical model for transcritical flow and sediment transport on uneven bathymetry." Journal of Hydraulic Engineering, Vol. 138, No. 1, pp. 46-56. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000473
  15. Kurganov, A., and Petrova, G. (2007). "A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system." Communications in Mathematical Sciences, Vol. 5, No. 1, pp. 133-160. https://doi.org/10.4310/CMS.2007.v5.n1.a6
  16. Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S. (2018). "The state of the world's beaches." Scientific Reports, Vol. 8, No 1, pp. 1-11. https://doi.org/10.1038/s41598-018-24630-6
  17. Papanicolaou, A.T.N., Elhakeem, M., Krallis, G., Prakash, S., and Edinger, J. (2008). "Sediment transport modeling review - Current and future developments." Journal of Hydraulic Engineering, Vol. 134, No. 1, pp. 1-14. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(1)
  18. Ponce, V.M. (1989). Engineering hydrology: Principles and practices. Vol. 640, Prentice Hall, Englewood Cliffs, NJ, U.S.
  19. Ranasinghe, R. (2016). "Assessing climate change impacts on open sandy coasts: A review." Earth-science Reviews, Vol. 160, pp. 320-332. https://doi.org/10.1016/j.earscirev.2016.07.011
  20. Son, S., Lynett, P., and Ayca, A. (2020). "Modelling scour and deposition in harbours due to complex tsunami induced currents." Earth Surface Processes and Landforms, Vol. 45, No. 4, pp. 978-998. https://doi.org/10.1002/esp.4791
  21. Tavakkol, S., and Lynett, P. (2017). "Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization." Computer Physics Communications, Vol. 217, pp. 117-127. https://doi.org/10.1016/j.cpc.2017.03.002
  22. Wu, W., and Wang, S.S. (2007). "One-dimensional modeling of dam-break flow over movable beds." Journal of Hydraulic Engineering, Vol. 133, No. 1, pp. 48-58. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48)
  23. Wu, W., and Wang, S.S. (2008). "One-dimensional explicit finite-volume model for sediment transport." Journal of Hydraulic Research, Vol. 46, No. 1, pp. 87-98. https://doi.org/10.1080/00221686.2008.9521846
  24. Xia, J., Lin, B., Falconer, R.A., and Wang, G. (2010). "Modelling dam-break flows over mobile beds using a 2D coupled approach." Advances in Water Resources, Vol. 33, No. 2, pp. 171-183. https://doi.org/10.1016/j.advwatres.2009.11.004
  25. Yuan, Y., Shi, F., Kirby, J.T., and Yu, F. (2020). "FUNWAVE GPU: Multiple GPU acceleration of a Boussinesq type wave model." Journal of Advances in Modeling Earth Systems, Vol. 12, No. 5, e2019MS001957.