• Title/Summary/Keyword: Dam height

Search Result 154, Processing Time 0.025 seconds

A Riverbed Change Prediction by River-Crossing Structure -Focused on the Major River Reaches of the Multifunctional Administrative City- (하천 횡단구조물에 의한 하상변동 예측 - 행정중심복합도시 주요 하천구간을 중심으로 -)

  • Yeon, Kyu-Sung;Jeong, Sang-Man;Yun, Chan-Young;Lee, Joo-Heon;Shin, Kwang-Seob
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.107-113
    • /
    • 2009
  • This study has been conducted for the long-term riverbed change prediction on Geum River and Miho Stream surrounding the planned Multifunctional Administrative City and the neighboring regions by the construction of a small dam. Based on the analysis of vertical riverbed changes of the cross-sectional data for the years 1988, 2002 and 2007, minimum bed elevation significantly decreased in both Geum River and Miho Stream in 2007 as compared to 1988. Compared to 2002, however, a slight elevation change was observed. To make a long-term prediction on riverbed changes by the construction of a small dam, a one dimensional HEC-RAS 4.0 model has been used. By the fixed bed model test, the water levels were calibrated. By using the cross-sectional data of 1988 and 2002, verification was conducted under a movable bed model. According to the prediction of riverbed changes for each scenario with varying height of small dam, minor impact is expected around Miho Stream while major impact is expected around Geum River by 2017, as the small dam height increases. If the small dam is 7m-high, for example, it's been simulated that 1.59m deposition would be expected around the upper stream of Miho Stream Confluence while 1.98m scour would be expected around the downstream of the small dam.

Crest Settlement Prediction of Concrete Faced Rock-Fill Dam After Initial Impounding (CFRD의 담수 후 정부침하량 예측)

  • Kim, Yong-Seong;Park, Han-Gyu;Lim, Heui-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.349-354
    • /
    • 2005
  • In this study, settlement characteristics of 23 CFRD was investigated from monitoring data and the method to estimate the crest settlements considering internal settlement during constructions was proposed. Moreover, crest settlement smaller than 20cm and deflection of face slab smaller than 20cm are not considered to be critical to the stability of large dam whose height is over 40m. Therefore, we assigned the region as safe zone that can be used as a guideline of maintenance of dam. These estimated data can be used in the design, construction and long-term maintenance in domestic CFRD hereafter.

  • PDF

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF

Analysis of Ground Height from Automatic Correlation Matching Result Considering Density Measure of Tree (수목차폐율을 고려한 자동상관매칭 수치고도 결과 분석)

  • Eo, Yang-Dam
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.181-187
    • /
    • 2007
  • To make digital terrain data, automatic correlation matching by stereo airborne/satellite images has been researched. The result of automatic correlation matching has a limit on extracting exact ground height because of angle of sensor, tree of height. Therefore, the amount of editing works depend on the distribution of spatial feature in images as well as image quality. This paper shows that the automatic correlation matching result was affected by density and height of tree.

  • PDF

Deformation Behavior of Existing Concrete-Faced Rockfill Dam due to Raising (증고에 따른 기존 CFRD 댐체의 변형거동)

  • Shin, Donghoon;Cho, Sungeun;Jeon, Jesung;Lee, Jongwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.77-83
    • /
    • 2007
  • In this study, deformation behavior of existing concrete face rockfill dam, which is raised to a certain height to enhance storage capacity or to improve hydraulic and hydrologic stability, is examined using numerical analysis method. The results obtained from FEM analysis show a possibility that additional fill at downstram slope of existing CFRD dam body may lead undesirable deformations and stresses in existing dam body, especially in face concrete, such as settlements in upper part and bulging in lower part, excessive bending moments, and eventualy tensile cracks. Therefore, in designing multi-staged raising construction of CFRD, it is essential to consider deformations and stresses to be developed within and between exisiting dam body and added parts due to additional fill, and to prepare a proper measure to prevent abnormal deformations and stresses in the dam body including added parts.

  • PDF

A Basic Study on Relative Liquefaction Failure Risk Assessment of Domestic Small to Medium-Sized Earthfill Dams (국내 중소규모 흙댐의 상대적 액상화 파괴위험도 평가 기초 연구)

  • Park, Tae Hoon;Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-155
    • /
    • 2023
  • This study aims to present a method to evaluate the relative risk of failure due to liquefaction of domestic small to medium-sized earthfill dams with a height of less than 15 m, which has little information on geotechnical properties. Based on the results of previous researches, a series of methods and procedures for estimating the probability of dam failure due to liquefaction, which calculates the probability of liquefaction occurrence of the dam body, the amount of settlement at the dam crest according to the estimation of the residual strength of the dam after liquefaction, the overtopping depth determined from the amount of settlement at the dam crest, and the probability of failure of the dam due to overtopping was explicitly presented. To this end, representative properties essential for estimating the probability of failure due to the liquefaction of small to medium-sized earthfill dams were presented. Since it is almost impossible to directly determine these representative properties for each of the target dams because it is almost impossible to obtain geotechnical property information, they were estimated and determined from the results of field and laboratory tests conducted on existing small to medium-sized earthfill dams in previous researches. The method and procedure presented in this study were applied to 12 earthfill dams on a trial basis, and the liquefaction failure probability was calculated. The analysis of the calculation results confirmed that the representative properties were reasonable and that the overall evaluation procedure and method were effective.

Estimation of Maintenance Flow for Suitable Utilization of Fishway (어도의 적절한 이용을 위한 유지유량 평가)

  • Kim, Seok-gyu;Kim, Chul;Kim, Seonghwan;Ko, Kwangyong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.281-287
    • /
    • 2009
  • Achieved monitoring regularly about fishway that is a intake dam belongings to Kyeongchon for 5 years. Result that achieve monitoring, discovered pressing issue of opening and closing degree of discharge control part in fishway. In this research, analyze discharge relation with fishway and intake sluice and presented operation plan of opening and closing of discharge control part. Investigated necessity intake discharge and benefited area to analyze relation of discharge that is flowed in fishway and discharge escaping by intake sluice. When opened discharge control part step by step gradually, analyzed discharge. Compared with survey discharge making ration curve of fishway and intake sluice using orifice and submerged weir formula. Because operation of intake dam is necessary intake discharge and upriver inflow discharge by time, operation uses by survey discharge and calculated opening discharge of fishway by opening discharge of intake sluice via monthly inflow discharge. To sum up, calculated floodgate opening height of fishway by water level to present maintenance standard of intake dam.

Finding the optimum shape of the energy dissipator to minimize the impact force due to the dam break flow

  • Asrini Chrysanti;Sangyoung Son
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.157-169
    • /
    • 2024
  • The sudden release of water from a dam failure can trigger bores on a flat surface and exert substantial impact forces on structures. This flow poses a high-risk flood hazard to downstream urban areas, making it imperative to study its impact on structures and devise effective energy dissipators to mitigate its force. In this study, a combination of Genetic Algorithm optimization and numerical modeling is employed to identify the optimal energy dissipator. The analysis reveals that a round arc-shaped structure proves most effective, followed by a triangular shape. These shapes offer wide adaptability in terms of structure dimensions. Structures with higher elevation, especially those with round or triangular shapes, demonstrate superior energy dissipation capabilities. Conversely, square-shaped structures necessitate minimal height to minimize impact forces. The optimal width for dissipating energy is found to be 0.9 meters, allowing for effective wave run-up and propagation. Furthermore, the force exerted on structures increases with higher initial water levels, but diminishes with distance from the dam, highlighting the importance of placement in mitigating impact forces.

The Temporal Changes of Channel Section in Naeseongcheon River, Kyeongbuk Province (경북 내성천 하도 단면의 시계열적 변화)

  • Lee, Gwang-Ryul;Kim, Dae Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.2
    • /
    • pp.53-63
    • /
    • 2011
  • The changes and causes of channel section in Naeseongcheon River, a tributary of Nakdong River, during the long(1984~2001) and short(2009~2011) periods are analyzed. There are the declines of channel height with a maximum of approximately 2m in the most areas of the lower reaches during the past 20 years. These are thought as the influences of active aggregate collections and river dredging. The size of sand bar within the channel at the NM1 decreases greatly during the past 2 years. This may results from the decrease of sediment supply due to the Yeongju Dam construction in the upper reaches. However, the NM2 and NL2 where the natural channel are preserved experience the slight increase of height during the past 2 years. Therefore, the anthropogenic channel interferences in Naeseongcheon River have greatly influenced on the declines of channel height by the decrease of sediment supply.

Mix Design and Physical Properties of Concrete Used in Seongdeok Multi-purpose Dam (성덕 다목적댐 콘크리트의 배합설계 및 역학적 특성)

  • Kim, Jin-Keun;Jang, Bong-Seok;Ha, Jae-Dam;Ryu, Jong-Hyun;Go, Suk-Woo;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.517-520
    • /
    • 2008
  • Gravity dam use self weight to stand external force like hydraulic pressure. In general, gravity dam concrete is divided into internal and external concrete. Seongdeok dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. And upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. In this study, we examined the mix design of internal/external concrete and physical properties(compressive strength, adiabatic temperature rise). And we also performed laboratory tests to verify exothermic properties. Lastly, we measured the hydration heat and thermal stress of upstream cofferdam.

  • PDF