• Title/Summary/Keyword: Dam Break Problem

Search Result 30, Processing Time 0.023 seconds

Removal of Geosmin Forming Alga (Anabaena macrospora) by Copper Sulfate (CuSO4에 의한 geosmin 유발조류(Anabaena macrospora)의 제거)

  • Park, Jae-Chung;Park, Jae-Bum;Song, Sung-Il;Kim, Hyun-Suk;Park, Jung-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.521-526
    • /
    • 2006
  • We have studied the possibility of removing Anabaena macrospora by injecting copper sulfate ($CuSO_4{\cdot}5H_2O$) into the raw water of a drinking water purification plant. Anabaena macrospora caused the unpleasant geosmin odor of drinking water in August 2001. The cell break-point of A. macrospora was 0.3 mg/L of $CuSO_4$. We were able to reduce the standing crops of A. macrospora effectively because $CuSO_4$ could break A. macrospora selectively. Because 0.3 mg/L of $CuSO_4$ could break both cells and akinetes, it reduced the possibility of a recurrent problem for them to meet a favorable condition. When $CuSO_4$ was injected in the early growth phase of algae and the mixing intensity was high, A. macrospora could be removed most effectively. The odor caused by A. macrospora was sustained for a while without any sudden change of environmental condition. Therefore, we hope that it could shorten the period of obstacle by injecting the optimal amount of 0.3 mg/L of $CuSO_4$. The water quality, alkalinity, conductivity, hardness and pH didn't changed by the injection of $CuSO_4$.

AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU (GPU를 이용한 효율적인 비압축성 자유표면유동 해석)

  • Hong, H.E.;Ahn, H.T.;Myung, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows (급변류에 의한 하상변동 예측을 위한 수심적분 수치모형)

  • Kim, Boram;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1061-1066
    • /
    • 2014
  • A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

Two-Dimensional Model for the Prediction of Inundation Area in Urbanized Rivers (도시하천에서의 홍수범람도 작성을 위한 2차원 모형의 개발)

  • 한건연;박재홍
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.119-131
    • /
    • 1995
  • Two-dimensional diffusion and kinematic hydrodynamic models have been studied for preparing the flood inundation map. The models have been tested by applying to one-dimensional dam-break problem. The results have good agreements compared with those of dynamic wave model. The diffusion wave model produces the mass conservation error close to zero. Floodwave analyses for two-dimensional floodplain with obstruction and channel-floodplain show both stable and efficient results. The model presented in this study can be used for flood inundation map and flood warning system.

  • PDF

Analysis of Initial Mass Distribution and Facility Shape to Determine Structural Alternative for Hazardous Zone Vulnerable to Debris Flow Disaster (토사재해 위험지역의 구조적 대안 설정을 위한 사태물질 초기 질량분포 및 방어시설물 형상의 영향 분석)

  • Seong, Joo-Hyun;Oh, Seung Myeong;Jung, Younghun;Byun, Yoseph;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • A 2-D hydrodynamic model for predicting the movement of debris flow was developed. The developed model was validated against a dam break flow problem conducted in EU CADAM project, and the performance of the model was shown to be satisfactory. In order to suggest structural alternative for hazardous zone vulnerable to debris flow disaster, two types of initial mass distribution and two shapes of defensive structure were considered. It was found that 1) the collapse of debris mass initiated with square pyramid shape induced more damage compared with that of cubic shape; and 2) a defensive structure with semi-circular shape was vulnerable to debris flow disaster in terms of debris control or primary defense compared with that of rectangular-shaped structure.

Development of Dry/Wet Algorithm for 2-Dimensional Flow Analysis (2차원 흐름해석을 위한 마름/젖음 알고리듬의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Choi, Seung-Yong;Oh, Hyun-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.624-628
    • /
    • 2008
  • Two-dimensional flow analysis is a way to provide good estimates for complex flow features in flow around islands and obstructions, flow at confluence and flow in braided channel. One of difficult problems to develop a two-dimensional hydraulic model is to analyze dry and wet area in river channel. Dry/wet problem can be encountered in river and coastal engineering problems, such as flood propagation, dam break analysis, tidal processes and so on. The objective of this study is to develop an accurate and robust two-dimensional finite element method with dry/wet technique in complex natural rivers. The dry/wet technique with Deforming Grid Method was developed in this study. The Deforming Grid Method was used to construct new mesh by eliminating of dry nodes and elements. The eliminated nodes and elements were decided by considering of the rising/descending velocity of water surface elevation. Several numerical simulations were carried out to examine the performance of the Deforming Grid Method for the purpose of validation and verification of the model in rectangular and trapezoidal channel with partly dry side. The application results of the model were displayed reasonable flow distribution.

  • PDF

Parameter Assessment for the Simulation of Drying/Wetting in Finite Element Analysis in River and Wetland (하천 및 습지에서 유한요소 해석시 마름/젖음 처리를 위한 매개변수 평가)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun;Kim, Sang Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.331-346
    • /
    • 2009
  • The serious problem facing two-dimensional finite element hydraulic model is the treatment of wet and dry areas. This situation is encountered in most practical river and coastal engineering problems, such as flood propagation, dam break analysis and so on. Especially, dry areas result in mathematical complications and require special treatment. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method of RMA-2 model to investigate for application of parameters. Experimental channel with partly dry side slopes, straight channel with irregular geometry and Han river were performed for tests. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.

An Application of the Multi-slope MUSCL to the Shallow Water Equations (천수방정식에 대한 다중 경사 MUSCL의 적용)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.819-830
    • /
    • 2011
  • The multi-slope MUSCL, proposed by T. Buffard and S. Clain, determines slopes of conserved variables at each edge of a cell in the linear reconstructions of data. In this study, the second order accurate numerical model was developed according to the multi-slope MUSCL to solve the shallow water equations on the unstructured grids. The HLLL scheme of approximate Riemann solvers was used to calculate fluxes. For the review of the applicability of the developed model, the results of the model were compared to the 'isolated building test' and the 'model city flooding experiment' conducted as part of the IMPACT (Investigation of extreMe flood Processes And unCerTainty) project in Europe. There were limitations to predict abrupt rising of water depths by the resistance of model buildings and water depths at the specific locations among the buildings. But they were identified as the same problems also revealed in results of the other models to the same experiment. On the more refined meshes to the 'model city flooding experiment' simulated results showed good agreement with measurements. It was verified that the developed model simulated well the complex phenomena such as a dam-break problem and the urban inundation by flash floods.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.