Cho, Jin Dong;Chun, Minsoo;Son, Jaeman;An, Hyun Joon;Yoon, Jeongmin;Choi, Chang Heon;Kim, Jung-in;Park, Jong Min;Kim, Jin Sung
Progress in Medical Physics
/
v.29
no.3
/
pp.92-100
/
2018
The manufacturer of a linear accelerator (LINAC) has reported that the target melting phenomenon could be caused by a non-recommended output setting and the excessive use of monitor unit (MU) with intensity-modulated radiation therapy (IMRT). Due to these reasons, we observed an unexpected beam interruption during the treatment of a patient in our institution. The target status was inspected and a replacement of the target was determined. After the target replacement, the beam profile was adjusted to the machine commissioning beam data, and the absolute doses-to-water for 6 MV and 10 MV photon beams were calibrated according to American Association of Physicists in Medicine (AAPM) Task Group (TG)-51 protocol. To verify the beam data after target replacement, the beam flatness, symmetry, output factor, and percent depth dose (PDD) were measured and compared with the commissioning data. The difference between the referenced and measured data for flatness and symmetry exhibited a coincidence within 0.3% for both 6 MV and 10 MV, and the difference of the PDD at 10 cm depth ($PDD_{10}$) was also within 0.3% for both photon energies. Also, patient-specific quality assurances (QAs) were performed with gamma analysis using a 2-D diode and ion chamber array detector for eight patients. The average gamma passing rates for all patients for the relative dose distribution was $99.1%{\pm}1.0%$, and those for absolute dose distribution was $97.2%{\pm}2.7%$, which means the gamma analysis results were all clinically acceptable. In this study, we recommend that the beam characteristics, such as beam profile, depth dose, and output factors, should be examined. Further, patient-specific QAs should be performed to verify the changes in the overall beam delivery system when a target replacement is inevitable; although it is more important to check the beam output in a daily routine.
In this paper, author estimated economic scale of radiation usage in Korea using Input-Output table 2005 and other micro data published. This estimation focused all kind of radiation usage in whole economic activity. Estimation of economic scale is quantitative analysis for how much radiation usage increase productivity and welfare. Economic scale estimation of radiation usage in Korea 2005 is 6,297 Billion Won and it occupies 0.74% of GDP. It is smaller level compared with that of US and Japan. It is 1.5% of GDP in US (1997) and 1.2% of GDP in Japan (2005). Radiation usage in industrial sector is 5,775 Billion Won and it is 0.68% of GDP. Radiation usage in agriculture sector is 171 Billion Won and it is 0.02% of GDP. Radiation usage in medical sector is 351 Billion Won and it is 0.04% of GDP. This implied that radiation usage in industrial sector is larger than other sector. Use of medical radiology may be enlarge in the future due to population structure. The result that radiation usage occupied 0.74% of GDP arouse contribution of radiation usage in daily life. It helps people to have more understanding and public acceptance for radiation.
Smart devices have penetrated deeply into our daily lives. They have not only increased user convenience, but also changed the overall lifestyle of society. The objective of this study was to examine the change process of user experience through device classification and technology by generation. In order to achieve the objective, this study analyzed the purpose and pattern of using a device, which is a digital platform, and the input and output, which are the most important digital components for personal exclusiveness and interaction. The analysis results of this study showed that, in the past, the purpose of using a device was clear, a device was used in common, and a separate device was used for input and output. However, as devices evolved, users began to emphasize the fun aspect than the purpose of a device. As a result, personal exclusiveness has increased. Moreover, unlike devices in the past depending on separate input or output methods, devices are evolving to employ a method performing input and output using the five senses of people such as the touchscreen using a body part of a user, voice, and motion. This study evaluated how the overall experience of users, which was obtained through technology, has changed for each generation. Furthermore, this study proposed the future direction of device development by considering the user experience. It is believed that the results of this study will be useful for future studies on the overall experience of users who will use a range of smart devices, which will be released in the future.
Park, Geun-Chul;Kim, Soo-Hong;Baik, Sung-Wan;Kim, Jae-Hyung;Jeon, Gye-Rok
Journal of Sensor Science and Technology
/
v.26
no.1
/
pp.7-14
/
2017
A threshold-based fall recognition algorithm using a tri-axial accelerometer and a bi-axial gyroscope mounted on the skin above the upper sternum was proposed to recognize fall-like activities of daily living (ADL) events. The output signals from the tri-axial accelerometer and bi-axial gyroscope were obtained during eight falls and eleven ADL action sequences. The thresholds of signal vector magnitude (SVM_Acc), angular velocity (${\omega}_{res}$), and angular variation (${\theta}_{res}$) were calculated using MATLAB. When the measured values of SVM_Acc, ${\omega}_{res}$, and ${\theta}_{res}$ were compared to the threshold values (TH1, TH2, and TH3), fall-like ADL events could be distinguished from a fall. When SVM_Acc was larger than 2.5 g (TH1), ${\omega}_{res}$ was larger than 1.75 rad/s (TH2), and ${\theta}_{res}$ was larger than 0.385 rad (TH3), eight falls and eleven ADL action sequences were recognized as falls. When at least one of these three conditions was not satisfied, the action sequences were recognized as ADL. Fall-like ADL events such as jogging and jumping up (or down) have posed a problem in distinguishing ADL events from an actual fall. When the measured values of SVM_Acc, ${\omega}_{res}$, and ${\theta}_{res}$ were applied to the sequential processing algorithm proposed in this study, the sensitivity was determined to be 100% for the eight fall action sequences and the specificity was determined to be 100% for the eleven ADL action sequences.
The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.
Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.
Parenteral nutrition has been an essential part of postoperative care of neonates requiring major surgery who are unable to tolerate enteral feeding for long periods during the postoperative period. However, TPN via central venous catheters(central TPN), used in increasing trend, still presents significant morbidity. To find out whether TPN via peripheral veins(peripheral TPN) could be used as a viable alternative for postoperative parenteral nutrition in neonates, a clinical study was carried out by a retrospective analysis of 53 neonates subjected to peripheral TPN for more than 7 days after surgery. Operations consisted of procedures for esophageal atresia with tracheoesophageal fistula, gastroschisis and omphalocele. Surgery was performed at the Division of Pediatric Surgery, Department of Surgery, Hanyang University Hospitall, from 1983 to 1994. The mean total duration of TPN was 13.3 days (range; 7-58 days), the average daily total fluid intake was 117.6 ml/kg during TPN and 158.6 ml/kg during subsequent oral feeding. The average daily total calorie intake was 57.7 kcal/kg during full strength TPN and 101.3 kcal/kg during subsequent oral feeding. The mean urine output was maintained at 3.5 ml/kg/ hour during TPN and at 3.6 ml/kg/hour during subsequent oral feeding. The increment of body weight observed during TPN was 132 g in TEF, 53 g in gastroschisis and 3 g in omphalocele patients, while loss of body weight was not observed. The mortality rate was 5.7 %(3/53) and was related to the underlying congenital anomalies, not the TPN. The most common complication of peripheral TPN observed was laboratory findings suggestive of liver dysfunction in 23 cases(43.4 %) with no significant clinical symptom or signs in any case, transient pulmonary edema in one case, and generalized edema in one case. None of the major complications usually expected associated with central TPN were observed. The result of this study suggest that peripheral TPN can be used for adeguate postoperative nutritional support in neonates requiring 2 to 3 weeks of TPN.
As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.2
/
pp.141-146
/
2014
This paper suggests a way of generating one-day load curves for performance improvement of peak shaving in a power system. This Peak Shaving algorithm is a long-term scheduling algorithm of PMS (Power Management System) for BESS (Battery Energy Storage System). The main purpose of a PMS is to manage the input and output power from battery modules placed in a power system. Generally, when a Peak Shaving algorithm is used, a difference occurs between predict load curves and real load curves. This paper suggests a way of minimizing the difference by making predict load curves that consider weekly normalization and seasonal load characteristics for smooth energy charging and discharging.
Kim, Hyo-suk;Do, Ki Seok;Park, Joo Hyeon;Kang, Wee Soo;Lee, Yong Hwan;Park, Eun Woo
The Plant Pathology Journal
/
v.36
no.1
/
pp.54-66
/
2020
This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (KMA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (Ci) and the 20-day and 7-day moving averages of Ci for the inoculum build-up phase (Cinc) prior to the panicle emergence of rice plants and the infection phase (Cinf) during the heading stage of rice plants, respectively. Based on Cinc and Cinf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.