• 제목/요약/키워드: Daily Reservoir Operation

검색결과 53건 처리시간 0.025초

농업용 둑높임저수지의 다중 용수공급을 위한 이수운영기준곡선 개발 (Development of Operating Rule Curve for Multipurpose Water Supply in Heightened Agricultural Reservoir)

  • 박종윤;정인균;이광야;김성준
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1389-1400
    • /
    • 2013
  • 본 연구에서는 농업용 둑높임저수지의 다중용수공급능력(관개 및 하천유지용수) 평가에 따른 이수운영기준곡선을 개발하였다. 20개 둑높이기 사업지구를 대상으로 특성분석에 따른 4개(웅양, 궁촌, 용암, 운암)의 대표 저수지를 선정하고, 이수운영모형을 이용한 물수지분석을 통해 하천유지용수 공급 가능량을 산정하였다. 이수운영기준은 관개기와 비관개기에 대해 방류제한수위(사업전 만수위)에서 상시만수위까지의 저수위구간을 하천유지용수공급 가능 수위로 설정하고 신뢰도, 회복도 및 취약도 지수를 이용하여 각 둑높임저수지 특성별 물공급 능력을 평가하였다. 이수운영기준 적용에 따른 둑높임저수지의 이수운영기준곡선은 과거 이수운영모의결과로부터 일별 저수위를 백분위(Percentile Rank)로 표현하였다. 각 분위별 저수위 구간을 3개의 완충구간(Buffer)으로 나누어 갈수년(5~25%), 평수년(25~75%) 및 풍수년(75~95%)에 해당하는 저수지 운영이 가능하도록 하였다.

2차원 유사운송모형을 이용한 저수지 퇴적분포유형의 추정 (Prediction of Reservoir Sedimentation Patterns Using a Two-Dimensional Transport Model)

  • 이봉훈;박창헌;박승우
    • 한국농공학회지
    • /
    • 제35권1호
    • /
    • pp.50-58
    • /
    • 1993
  • The sedimentation patterns at a reservoir, important to the reservoir capacity curve were simulated using a depth averaged, two-dimensional sediment transport model, that is capable of depicting velocity distributions and sediment transportation. The Banweol reservoir, whose stage capacity relationships have been surveyed before and after the construction, was selected and the daily inflow rates and stages were simulated using a reservoir operation model(DI-ROM). The applicability of the transport model was tested from the comparisons of simulated sedimentation patterns to the surveyed results. The simulated inflow rates and water level fluctuations at the reservoir during twenty-one years from 1966 to 1986, showed that water levels exceeding 80 percent of the total capacity occurred for 70 percent of the periods and inflow rates less than 5000rn$^3$/day sustained for 54 percent of the spans. Dorminant flow directions were simulated from two streamflow inlets to the dam site. And simulated sediment concentrations were higher near the inlets and lower at the inside of the reservoir. Sediment was deposited heavily near the inlets, and portions of sediments were distributed along the flow paths within the reservoir. The comparisons between the simulation results and the surveyed depositions were partially matched. However, it was not possible to compare two results at the upper parts of the reservoir where dredging was carried out few times for the purpose of reservoir maintenance. This study demonstrates that sedimentation patterns within the reservoir are closely related to incoming sediment and flow rates, water level fluctuations, and flow circulation within the reservoir.

  • PDF

기후변화에 따른 소양호 수온 및 성층강도 변화 예측 (Projection of water temperature and stratification strength with climate change in Soyanggang Reservoir in South Korea)

  • 윤여정;박형석;정세웅
    • 한국물환경학회지
    • /
    • 제35권3호
    • /
    • pp.234-247
    • /
    • 2019
  • In a deep lake and reservoir, thermal stratification is of great importance for characteristics of hydrodynamic mixing of the waterbody, and thereby influencesvertical distribution of dissolved oxygen, substances, nutrients, and the phytoplankton community. The purpose of this study, was to project the effect of a future climate change scenario on water temperature, stratification strength, and thermal stability in the Soyanggang Reservoir in the Han River basin of South Korea, using a suite of mathematical models; SWAT, HEC-ResSim, and CE-QUAL-W2(W2). W2 was calibrated with historical data observed 2005-2015. Using climate data generated by HadGEM2-AO with the RCP 4.5 scenario, SWAT predicted daily reservoir inflow 2016-2070, and HEC-ResSim simulated changes in reservoir discharge and water level, based on inflow and reservoir operation rules. Then, W2 was applied, to predict long-term continuous changes of water temperature, in the reservoir. As a result, the upper layer (5 m below water surface) and lower layer (5 m above bottom) water temperatures, were projected to rise $0.0191^{\circ}C/year$(p<0.05) and $0.008^{\circ}C/year$(p<0.05), respectively, in response to projected atmospheric temperature rise rate of $0.0279^{\circ}C/year$(p<0.05). Additionally, with increase of future temperature, stratification strength of the reservoir is projected to be stronger, and the number of the days when temperature difference of the upper layer and the lower layer becomes greater than $5^{\circ}C$, also increase. Increase of water temperature on the surface of the reservoir, affected seasonal growth rate of the algae community. In particular, the growth rate of cyanobacteria increased in spring, and early summer.

용담댐 운영 시나리오에 따른 대청댐 저수량 변화에 관한 연구 (A Study on Daily Water Storage Simulation of the Daecheong Dam by Operation Scenario of the Yongdam Dam)

  • 노재경;김현호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1403-1407
    • /
    • 2005
  • In order to analyze the water storage of the Daecheong dam after constructing the Yongdam dam situated in upstream, a daily cascaded simulation model for analyzing water storages in the Yongdam-Daecheong dams was developed. Operation scenarios of the Yongdam dam were selected to 8 cases with the combinations of downstream outflows and water supplies to the Jeonju region. Daily water storages in the Daecheong dam was analyzed daily by simulating from 1983 to 2004. The results are summarized as follows. Firstly, water supplies from the Daecheong dam were analyzed to amount $1,964.2Mm^3$ on a yearly average in case without the Yongdam dam. In case with the Yongdam dam, water supplies from the Daecheong dam were analyzed to amount $1,858.7\~1,927.3Mm^3$ in case with downstream outflow of $5\;m^3$ is, and were analyzed to amount $1,994.9\~2,017.8Mm^3$ in case with downstream outflow of $10\;m^3/s $. These values are compared to $1,649Mm^3$ applied in design. Secondly, reservoir use rate which was defined rate of water supply to effective water storage reached $241.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $228.3\~236.8\% In case with downstream outflow of $5\;m^3/s$, and reached $245.1\~247.9\% in case with downstream outflow of $10\;m^3/s$. Thirdly, runoff rate which is defined rate of dam inflow to areal rainfall reached $57.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $62.0\~68.4\% in case with downstream outflow of $5\;m^3/s$, and reached $64.1\~68.5\% in case with downstream outflow of $10\;m^3/s$. Fourth, in case with downstream outflow of $10\;m^3/s$ is from the Yongdam dam, appropriate water supply amounts to the Jeonju region were analyzed to only $0.50Mm^3/day$ from the daily simulation of water storages in the Yongdam dam. Comprehensively, water supply capacity of the Daecheong dam was analyzed to affect in small amounts in spite of the construction of the Yonsdam dam. It is effected to achieve the effective water management of the Yongdam dam and the Daecheong dam by using the developed cascaded model.

  • PDF

수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가 (Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season)

  • 정형모;이상현;김경환;곽영철;최은혁;윤성은;나라;주동혁;유승환;윤광식
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

CAT을 이용한 저수지 수위 예측 (Prediction of Reservoir Water Level using CAT)

  • 장철희;김현준;김진택
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.27-38
    • /
    • 2012
  • This study is to analyse the hydrological behavior of agricultural reservoir using CAT (Catchment hydrologic cycle Assessment Tool). The CAT is a water cycle analysis model in order to quantitatively assess the characteristics of the short/long-term changes in watershed. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. The CAT especially supports the analysis of runoff processes in paddy fields and reservoirs. To evaluate the impact of agricultural reservoir operation and irrigation water supply on long-term rainfall-runoff process, the CAT was applied to Idong experimental catchment, operated for research on the rural catchment characteristics and accumulated long term data by hydrological observation equipments since 2000. From the results of the main control points, Idong, Yongdeok and Misan reservoirs, the daily water levels of those points are consistent well with observed water levels, and the Nash-Sutcliffe model efficiencies were 0.32~0.89 (2001~2007) and correlation coefficients were 0.73~0.98.

댐저수지 하상의 퇴적물 관리를 위한 GIS 시스템 개발 (Development of GIS System for the Monitering of the Riverbed Sediment on Dam Reservoir)

  • 박준규
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 추계학술대회
    • /
    • pp.33-45
    • /
    • 2006
  • 국내 대부분의 댐저수지는 완공후 운영기간이 길어지면서 퇴적물에 대한 관심이 날로 증가하고 있으며 인공 조성된 저수지이므로 일반적으로 유역 면적이 넓다는 특징을 가지고 있다. 이로인해 자연호에 비해 수체의 흐름이 느려지고 유입물이 상당량 퇴적되는 것으로 알려지고 있다. 이에 본 연구에서는 퇴적물의 분포 및 특성을 조사하는 방법 중 음파의 파동을 이용한 퇴적물 탐사기법을 통하여 하상의 정밀 지형조사를 실시하였다. 정확한 퇴적물 산정을 위해 GPS 측량, 저주파 천부지층탐사기 및 고주파 음향측심기의 조합을 통해 데이터를 획득하였으며 이를 바탕으로 하상에 대한 3차원 공간 데이터인 DEM과 DSM을 생성하였다. 또한 본 연구에서는 구축된 하상 지형 데이터를 기반으로 하는 퇴적물 관리 GIS 시스템을 개발하였으며 이를 댐저수지에 축적되어 저수지의 용적 및 수질에 악영향을 미치는 퇴적물의 관리시스템으로 활용하고자 하였다.

  • PDF

관개지구의 관행 물관리를 고려한 저수지 용수공급량 추정 (Estimation of Amounts of Water Release from Reservoirs Considering Customary Irrigation Water Management Practices in Paddy-Field Districts)

  • 강민구;오승태;김진택
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.1-9
    • /
    • 2014
  • The DIROM (Daily Irrigation Reservoir Operation Model) was modified to estimate amounts of water release from reservoirs, considering customary irrigation water management practices, such as water supply for puddling and transplanting paddy rice from seeding beds and mid-season drainage. The applicability of the modified model was investigated by simulating amounts of water release from three study reservoirs: Hwamae, Ogi, and Doya Reservoirs. In terms of annual amounts of water release, the relative errors between the observed and simulated values in 2012 and 2013 ranged -26.20 % to 10.28 % and 4.90 % to 30.06 %, respectively; in case of reservoir water levels, the RMSE values ranged 0.45 m to 1.34 m and 0.40 m to 1.27 m, respectively. Also, it was revealed that the model provided better simulation results for monthly water releases than the original model. In addition, the model presented better performance in simulating 10-day amounts of water release from April to June. However, the model had still significant errors in the simulation results from July to September because the reservoirs were practically operated to adapt to water management circumstances. Finally, it is concluded that the modified DIROM can estimate the amounts of water release from reservoirs, reflecting irrigation water management customs in paddy-field districts. To achieve higher prediction accuracy of the model, it is necessary to incorporate practical reservoir operation rules into the model.

관개용수로의 자동수위측정 자료를 활용한 농업용 저수지 공급량 산정 및 분석 (Assessing Irrigation Water Supply from Agricultural Reservoir Using Automatic Water Level Data of Irrigation Canal)

  • 방재홍;최진용;윤푸른;오창조;맹승진;배승종;장민원;장태일;박명수
    • 한국농공학회논문집
    • /
    • 제63권1호
    • /
    • pp.27-35
    • /
    • 2021
  • KRC (Korea Rural Community Corporation) is in charge of about 3,400 agricultural reservoirs out of 17,240 agricultural reservoirs, and automatic water level gauges in reservoirs and canals were installed to collect reservoir and canal water level data from 2010. In this study, 10-minute water level data of 173 reservoir irrigation canals from 2016 to 2018 are collected, and discharge during irrigation season was calculated using rating curves. For estimation of water supply, irrigation water requirement was calculated with HOMWRS (Hydrological Operation Model for Water Resources System), and the summation of reservoir water storage decrease was calculated with daily reservoir storage data from RAWRIS (Rural Agricultural Water Resource Information System). From the results, the total yearly amount of irrigation water supply showed less than 10% difference than the irrigation water requirement. The regional analysis revealed that reservoirs in Jeollanam-do and Chungcheongnam-do supply greater irrigation water than average. On the contrary, reservoirs in Gyeongsangnam-do and Chungcheongbuk-do supply less than others. This study was conducted with a limited number of reservoirs compared to total agricultural reservoirs. Nevertheless, it can indicate irrigation water supply from agricultural reservoirs to provide information about agricultural water use for irrigation.

기상예보를 고려한 관개용 저수지의 최적 조작 모형(I) -일강수량.일증발량 자료발생- (Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (I) - Generating Daily Rainfall and Evaporation Data-)

  • 김병진;박승우
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.63-72
    • /
    • 1994
  • The objective of the study is to develop weather generators for daily rainfall and small pan evaporation and to test the applicability with recorded data. Daily rainfall forecasting model(DRFM) was developed that uses a first order Markov chain to describe rainfall seque- nces and applies an incomplete Gamma function to predict the amount of precipitation. Daily evaporation forecasting model(DEFM) that adopts a normal distribution function to generate the evaporation for dry and wet days was also formulated. DRFM and DEFM were tested with twenty year weather data from eleven stations using Chi-square and Kolmogorov and Smirnov goodness of fit tests. The test results showed that the generated sequences of rainfall occurrence, amount of rainfall, and pan evaporation were statistically fit to recorded data from eleven, seven, and seven stations at the 5% level of significance. Generated rainfall data from DRFM were very close in frequency distri- bution patterns to records for stations all over the country. Pan evaporation for rainy days generated were less accurate than that for dry days. And the proposed models may be used as tools to provide many mathematical models with long-term daily rainfall and small pan evaporation data. An example is an irrigation scheduling model, which will be further detailed in the paper.

  • PDF