• Title/Summary/Keyword: Daecheong Lake

Search Result 45, Processing Time 0.018 seconds

Assessment of Water Quality Impact of Submerged Lakeside Macrophyte (저수지 주변 식물의 침수시 수질 영향)

  • Lee, Yo-Sang;Park, Jong-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • In summer and early autumn, eutrophication occurs occasionally in many reservoirs. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. This study include examination of pollutant load, species of plant, community structure and productivity of macrophyte in unit area at lakeside. The result of this research will be used as a guideline of water quality management on reservoir through assessing water quality effect of submerged plant. The areal distribution, composition of species and submerged area of macrophyte changes according to rainfall pattern every year, so it is difficult to calculate nutrient load annually from submerged macrophyte. In this study, the nutrient load from submerged macrophyte assess from Daecheong and Juam reservoir in 2001. TN and TP load of submerged macrophyte shows 0.043% and 0.069%, respectively, of annual discharge load on Daecheong watershed. At lake Juam, TN and TP shows 0.64% and 1.28% load, respectively. The reason that nutrient load of lake Juam is greater than that of lake Daecheong is that macrophyte distribution area of lake Juam is 5 times greater than that of lake Daecheong. Total nutrient load of lake Daecheong is 3 times greater than that of lake Juam.

A study on Asterocaelum sp., a grazer of filamentous cyanobacteria in the Lake Daecheong (대청호에서 사상 남조류 포식성 Asterocaelum sp.(Protozoan)의 발생에 관한 연구)

  • 천세억;박혜경;한홍의
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • A milky gray scum was observed at some water area of the lake Daecheong in the summer of 1997 and 1998. To identify a causing organism of scum and affecting factors, we observed the scum material by a phase contrast microscope and surveyed the phsico-chemical water quality during the outbreak of scum. The scum was found out to be clogging cysts of amoeboid protozoan, Asterocaelum sp.(Protozoea Sarcodina Aconchulinida), grazer of filamentous cyanobacteria, Anabaena genus. The protozoan scum appeared during Anabaena bloom period, which continued for a while. This protozoan was presumed acting as a regulator of Anabaena bloom in the lake Daecheong during the summer season. Moreover this is the first report on Asterocaelum sp. a grazing filamentous cyanobacteria occurred in Korean freshwater.

  • PDF

Community Dynamics of Phytoplankton in Lake Daecheong (대청호의 식물플랑크톤 군집 변화)

  • Park, Jong-Geun;Lee, Jung-Joon
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2005
  • Temporal variability in lake phytoplankton is controlled by a complex between hydrological and chemical factors, and biological interactions. We explored annual change of phytoplankton in Lake Daecheong, using phytoplankton analysis data from 1997 to 2002 (except 2000). The standing crop of phytoplankton was ranged from 3.5 x 10 to 1.5 x 106 cells mL$^{-1}$ and the highest mean value was at site 1. The class composition ratios of phytoplankton standing crop were divided into three classes. From January to March, diatoms showed a dominance (68.1-77.7%). From April to June, diatoms were mixed with cryptomonad etc. or blue-green algae. From July to October, blue-green algae showed a dominance (54.7-84.0%). In the case of green algae, the class composition ratios were below 10%. But green algae appeared all the year round.

Evaluation of treatment efficiencies of pollutants in daecheong lake juwon stream constructed wetlands (대청호 주원천 인공습지의 오염물질 정화효율 평가)

  • Kim, Tae-Hun;Sung, Ki-Eun;Ha, Duk-Ho;Kim, Dong-Hee;Heo, Soon-Uk;Choi, Chung-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.211-222
    • /
    • 2015
  • This study focused on evaluating the efficiency of the removal of non-point source pollution by Daecheong Lake Juwon Stream constructed wetlands. The constructed wetland system is a surface flow type designed in the year 2007 for purifying eutrophic water of Daecheong Lake Juwon Stream. The value of conductivity, suspended solids(SS), chemical oxygen demand using a potassium permanganate($COD_{Mn}$), five-day biochemical oxygen demand($BOD_5$), total nitrogen(T-N), total phosphorous(T-P), and pH in inflow averaged 220.2, 2.46, 3.33, 1.34, 2.00, 0.04 mg/L and 7.24, respectively and in outflow averaged 227.9, 1.12, 3.34, 0.87, 1.16, 0.02 mg/L and 7.45, respectively. The average removal efficiency of constructed wetlands was 30 % for SS, 22 % for $BOD_5$, 45 % for T-N and 31 % for T-P. The removal rates of SS, $BOD_5$ and T-N in the spring, summer and autumn were higher than those in winter. The removal rate of T-P was not significant different in all seasons. The amounts of pollutants removal in the constructed wetlands were higher in the order of $3^{rd}$ < $2^{nd}$ < $1^{st}$ wetland for SS and T-P, $2^{nd}$ < $3^{rd}$ < $1^{st}$ wetland for $BOD_5$ and T-N. Therefore, our findings suggest that the constructed wetlands could well treat the eutrophic Daecheong Lake Juwon Stream waters.

Relationship among Inflow Volume, Water Quality and Algal Growth in the Daecheong Lake (대청호 유입유량 변동과 수질 및 조류증식의 관계)

  • Cheon, Se-Uk;Lee, Jea-An;Lee, Jay J.;Yoo, Yung-Bok;Bang, Kyu-Chul;Lee, Yeoul-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.342-348
    • /
    • 2006
  • Changes in water quality and algal growth according to the differences in the inflow volume were investigated in the Daecheong Lake from 1998 to 2001. Until year 2000, inflow volume considerably depended on the rainfall throughout the basin. However, the correlation was low since 2001 when water storage in the upstream Yongdam Lake was started. According to inflow volume-TP relationship analyses, significant correlation was found at up- and middle-stream sites, excluding down-stream site of the Daechong Lake. For chlorophyll-a, correlation was found with flow volume at all sites except for Choo-So. In a dry year, although nutrients loads were relatively lower than those in rainy years, there were higher concentrations of chlorophyll-a and massive bloom of Microcystis. Limiting factors for algal growth seems to be not the volume of nutrients load but retention time and physical disturbance of the water body influenced by inflow volume. Thus, in the Daecheong lake, it would be more important to focus on the management of eutrophication in dry years than in rainy ones.

Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality (대청호 홍수조절지 내 경작활동이 수질에 미치는 영향)

  • Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • The excessive use of fertilizer and compost in agricultural land increases the accumulation of nutrients in soil. The surplus nutrients in soil transported through surface and sub-surface flow can lead to water pollution problems and algal bloom. Moreover, nutrient accumulation and continuous crop cultivation changes the physical structure of the soil, which increases the potential of nutrient. The cultivation in the Daecheong Lake reservoir area may have a direct effect on the lake's water quality due to leaching and releasing of nutrients when water level rises. This research was carried out to analyze the physical and chemical properties of soil in the agricultural areas surrounding Daecheong Dam reservoir to provide basic data available for the establishment of Daecheong Lake water quality management measures. The soil of the Daecheong Lake reservoir was classified as sandy Loam, where surplus nutrients can be transported. Chemical compositions in the soil were found to be significantly affected by use of different fertilizer amounts. Nutrient outflow occurred during spring rainfall events from the rice paddy fields, whereas excess nutrients from summer to fall seasons originated from dry paddy fields. Nutrient outflow from dry paddy fields is mainly from sub-surface flow. Organic agricultural wastes from agricultural land and excessive vegetation inside the river was also evaluated to contribute to the increase in organic matter and nutrients of the river. The results can be used to select the priority management area designation and management techniques in the Daecheong Lake for water quality improvement.

Diel Vertical Distribution of Cyanobacteria in Lake Daecheong (대청호의 남조세균 일주 수직분포)

  • Park, Jong-Geun;Kim, Yeoun-Suk;Lee, Jung-Jun;Jang, Sung-Hyun;Lee, Jung-Ho
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2006
  • Cyanobacteria regulate their buoyancy in response to changing environmental conditions. This process is essential for cyanobacterial development and can account for their dominance in eutrophic waters in summer. The present investigation was conducted to understand the 24-hour vertical distribution of cyanobacteria and water quality characteristics in Lake Daecheong. Water samples were collected and analyzed at depth intervals of 2 or 3 m and at an interval of three hours for a day on August 28, 2001 and September 24, 2002. In 2001 the accumulated standing crop of Microcystis spp. from surface to a depth of 6 m was 94.9%. Microcystis spp. showed no vertical migration below the thermocline. Microcystis spp. had maximum density near the surface, but shifted to 2 m depth at 2 p.m. A dense population of Anabaena spp. accumulated near the surface from 2 to 5 p.m. in 2002.

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

The Agricultural Utilization of Daecheong Lake Sediments and Algae (대청호(大淸湖) 저니(底泥) 및 조류(藻類)의 농업적(農業的) 활용(活用) 연구(硏究))

  • Chang, Ki-Woon;Lim, Jae-Shin;Lee, In-Bog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.111-116
    • /
    • 1994
  • These studies were carried out to investigate the possibility on the agricultural utilization of lake sediment collected in the Daecheong Lake. Several parameters to estimate the degree of maturity of compost by windrow system were tested during a 50 day periods, and the results were as follows : During the composting of Daecheong Lake sediment, C/N ratio decreased gradually from 18.9 at the beginning to 13.1 at the final, while CEC increased from 33.5me/100g to 62.5me/100g. The temperature of lake sediment pile was the highest as $52^{\circ}C$ at 15th day and then decreased slowly until $30^{\circ}C{\sim}40^{\circ}C$ after 50 days. The results may be suggested that Daecheong Lake sediment compost reaches an acceptable level of stability after about 50 days. In order to know the effect of the Lake sediment and its compost on the growth of tomato(Lycopersicum esculentum M.), pot experiments were performed. The appiication of lake sediment(AS) itself, sediment organic fertilizer(SOF), and NPK mixed with sediment organic fertilizer(NSF) was more effective for tomato plant height, fresh and dry weight, and chlorphyll content than those of control treatment. Also, the lake sediment compost improved the physico-chemical properties of soil such as pH, total carbon, total nitrogen, available phosphorous and CEC.

  • PDF

Water Environmental Factors and Trophic States in Lake Daecheong (대청호의 수질 환경요인과 영양단계 평가)

  • Park, Jong-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.382-392
    • /
    • 2005
  • Data were collected in Lake Daecheong from March 1997 to October 2002 and used to understand an annual change of water environmental factors and trophic states. The surface water temperature was ranged from $3.2^{\circ}C$ to $33.1^{\circ}C$ In the middle of February, water temperature was the lowest. Turbidity was ranged from 0.1 to 203.5 NTU, but the values of above 30 NTU were only measured at site 1. The total mean values of COD and Chl a were $3.6{\pm}1.4\;mg\;O_2\;L^{-1}$, $9.3{\pm}12.8\;{\mu}g\;L^{-1}$respectively. The concentrations of TP and TN were ranged from 0.14 to 5.09 mg N $L^{-1}$, 1 to $247\;{\mu}g\;P\;L^{-1}$ respectively. The total mean value of TN/TP ratio was $98.7{\pm}56.2$. The trophic states were ranged from mesotrophic to eutrophic in Lake Daecheong.