• Title/Summary/Keyword: DTW Matching

Search Result 30, Processing Time 0.02 seconds

Range Subsequence Matching under Dynamic Time Warping (DTW 거리를 지원하는 범위 서브시퀀스 매칭)

  • Han, Wook-Shin;Lee, Jin-Soo;Moon, Yang-Sae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.559-566
    • /
    • 2008
  • In this paper, we propose a range subsequence matching under dynamic time warping (DTW) distance. We exploit Dual Match, which divides data sequences into disjoint windows and the query sequence into sliding windows. However, Dual Match is known to work under Euclidean distance. We argue that Euclidean distance is a fragile distance, and thus, DTW should be supported by Dual Match. For this purpose, we derive a new important theorem showing the correctness of our approach and provide a detailed algorithm using the theorem. Extensive experimental results show that our range subsequence matching performs much better than the sequential scan algorithm.

Mobile Gesture Recognition using Dynamic Time Warping with Localized Template (지역화된 템플릿기반 동적 시간정합을 이용한 모바일 제스처인식)

  • Choe, Bong-Whan;Min, Jun-Ki;Jo, Seong-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.482-486
    • /
    • 2010
  • Recently, gesture recognition methods based on dynamic time warping (DTW) have been actively investigated as more mobile devices have equipped the accelerometer. DTW has no additional training step since it uses given samples as the matching templates. However, it is difficult to apply the DTW on mobile environments because of its computational complexity of matching step where the input pattern has to be compared with every templates. In order to address the problem, this paper proposes a gesture recognition method based on DTW that uses localized subset of templates. Here, the k-means clustering algorithm is used to divide each class into subclasses in which the most centered sample in each subclass is employed as the localized template. It increases the recognition speed by reducing the number of matches while it minimizes the errors by preserving the diversities of the training patterns. Experimental results showed that the proposed method was about five times faster than the DTW with all training samples, and more stable than the randomly selected templates.

Implementation and Evaluation of Abnormal ECG Detection Algorithm Using DTW Minimum Accumulation Distance (DTW 최소누적거리를 이용한 심전도 이상 검출 알고리즘 구현 및 평가)

  • Noh, Yun-Hong;Lee, Young-Dong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Recently the convergence of healthcare technology is used for daily life healthcare monitoring. Cardiac arrhythmia is presented by the state of the heart irregularity. Abnormal heart's electrical signal pathway or heart's tissue disorder could be the cause of cardiac arrhythmia. Fatal arrhythmia could put patient's life at risk. Therefore arrhythmia detection is very important. Previous studies on the detection of arrhythmia in various ECG analysis and classification methods had been carried out. In this paper, an ECG signal processing techniques to detect abnormal ECG based on DTW minimum accumulation distance through the template matching for normalized data and variable threshold method for ECG R-peak detection. Signal processing techniques able to determine the occurrence of normal ECG and abnormal ECG. Abnormal ECG detection algorithm using DTW minimum accumulation distance method is performed using MITBIH database for performance evaluation. Experiment result shows the average percentage accuracy of using the propose method for Rpeak detection is 99.63 % and abnormal detection is 99.60 %.

A Study on Feature Extraction and Matching of Enhanced Dynamic Signature Verification

  • Kim Jin-Whan;Cho Hyuk-Gyn;Cha Eui-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.419-423
    • /
    • 2005
  • This paper is a research on feature extraction and comparison method of dynamic (on-line) signature verification. We suggest desirable feature information and modified DTW(Dynamic Time Warping) and describe the performance results of our enhanced dynamic signature verification system.

  • PDF

The Modified DTW Method for on-line Automatic Signature Verification (온라인 서명자동인식을 위한 개선된 DTW)

  • Cho, Dong-Uk;Bae, Young-Lae
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.451-458
    • /
    • 2003
  • Dynamic Programming Matching (DPM) is a mathematical optimization technique for sequentially structured problems, which has, over the years, played a major role in providing primary algorithms in pattern recognition fields. Most practical applications of this method in signature verification have been based on the practical implementational version proposed by Sakoe and Chiba [9], and is usually applied as a case of slope constraint p = 0. We found, in this case, a modified version of DPM by applying a heuristic (forward seeking) implementation is more efficient, offering significantly reduced processing complexity as well as slightly improved verification performance.

A Study on Word Recognition Using Neural-Fuzzy Pattern Matching (뉴럴-퍼지패턴매칭에 의한 단어인식에 관한 연구)

  • 이기영;최갑석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.130-137
    • /
    • 1992
  • This paper presents the word recognition method using a neural-fuzzy pattern matching, in order to make a proper speech pattern for a spectrum sequence and to improve a recognition rate. In this method, a frequency variation is reduced by generating binary spectrum patterns through associative memory using a neural network, and a time variation is decreased by measuring the simillarity using a fuzzy pattern matching. For this method using binary spectrum patterns and logic algebraic operations to measure the simillarity, memory capacity and computation requirements are far less than those of DTW using a conventional distortion measure. To show the validity of the recognition performance for this method, word recognition experiments are carried out using 28 DDD city names and compared with DTW and a fuzzy pattern matching. The results show that our presented method is more excellent in the recognition performance than the other methods.

  • PDF

Hybrid Scaling Based Dynamic Time Warping for Detection of Low-rate TCP Attacks

  • So, Won-Ho;Yoo, Kyoung-Min;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.592-600
    • /
    • 2008
  • In this paper, a Hybrid Scaling based DTW (HS-DTW) mechanism is proposed for detection of periodic shrew TCP attacks. A low-rate TCP attack which is a type of shrew DoS (Denial of Service) attacks, was reported recently, but it is difficult to detect the attack using previous flooding DoS detection mechanisms. A pattern matching method with DTW (Dynamic Time Warping) as a type of defense mechanisms was shown to be reasonable method of detecting and defending against a periodic low-rate TCP attack in an input traffic link. This method, however, has the problem that a legitimate link may be misidentified as an attack link, if the threshold of the DTW value is not reasonable. In order to effectively discriminate between attack traffic and legitimate traffic, the difference between their DTW values should be large as possible. To increase the difference, we analyze a critical problem with a previous algorithm and introduce a scaling method that increases the difference between DTW values. Four kinds of scaling methods are considered and the standard deviation of the sampling data is adopted. We can select an appropriate scaling scheme according to the standard deviation of an input signal. This is why the HS-DTW increases the difference between DTW values of legitimate and attack traffic. The result is that the determination of the threshold value for discrimination is easier and the probability of mistaking legitimate traffic for an attack is dramatically reduced.

Implementation of a Tone Correction System Through a Visualization of Melody Comparison (멜로디 비교 시각화를 통한 음정 교정 시스템 구현)

  • Lee, Hye-In;Park, Ju-Hyun;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.156-161
    • /
    • 2014
  • With the proliferation of digital music, public's interest in music and desire to sing well are increasing. This paper presents the implementation of a tone correction system through a visualization of comparison between music and humming data. For this we extract MIDI note from music and humming data and then design a matching engine using DTW algorithm which is for robust matching results against local timing variation and inaccurate tempo. This system is expected to correct the user's wrong tone by visualization and feedback from the result.

Development of Audio Melody Extraction and Matching Engine for MIREX 2011 tasks

  • Song, Chai-Jong;Jang, Dalwon;Lee, Seok-Pil;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.164-166
    • /
    • 2012
  • In this paper, we proposed a method for extracting predominant melody of polyphonic music based on harmonic structure. Harmonic structure is an important feature parameter of monophonic signal that has spectral peaks at the integer multiples of its fundamental frequency. We extract all fundamental frequency candidates contained in the polyphonic signal by verifying the required condition of harmonic structure. Then, we combine those harmonic peaks corresponding to each extracted fundamental frequency and assign a rank to each after calculating its harmonic average energy. We run pitch tracking based on the rank of extracted fundamental frequency and continuity of fundamental frequency, and determine the predominant melody. For the query by singing/humming (QbSH) task, we proposed Dynamic Time Warping (DTW) based matching engine. Our system reduces false alarm by combining the distances of multiple DTW processes. To improve the performance, we introduced the asymmetric sense, pitch level compensation, and distance intransitiveness to DTW algorithm.

  • PDF

DYNAMIC TIME WARPING FOR EFFICIENT RANGE QUERY

  • Long Chuyu Li;Jin Sungbo Seo;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.294-297
    • /
    • 2005
  • Time series are comprehensively appeared and developed in many applications, ranging from science and technology to business and entertainrilent. Similarity search under time warping has attracted much interest between the time series in the large sequence databases. DTW (Dynamic Time Warping) is a robust distance measure and is superior to Euclidean distance for time series, allowing similarity matching although one of the sequences can elastic shift along the time axis. Nevertheless, it is more unfortunate that DTW has a quadratic time. Simultaneously the false dismissals are come forth since DTW distance does not satisfy the triangular inequality. In this paper, we propose an efficient range query algorithmbased on a new similarity search method under time warping. When our range query applies for this method, it can remove the significant non-qualify time series as early as possible before computing the accuracy DTW distance. Hence, it speeds up the calculation time and reduces the number of scanning the time series. Guaranteeing no false dismissals, the lower bounding function is advised that consistently underestimate the DTW distance and satisfy the triangular inequality. Through the experimental result, our range query algorithm outperforms the existing others.

  • PDF