• Title/Summary/Keyword: DSSCs

Search Result 212, Processing Time 0.023 seconds

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.

Facile Fabrication of $TiO_2$ Photoelectrodes Using Intense Pulsed Light for Dye-Sensitized Solar Cells

  • Jin, Hwa-Yeong;Yu, Gi-Cheon;Lee, Jin-A;Im, Jeong-A;Kim, Ji-Hyeon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.228-228
    • /
    • 2013
  • Dye-Sensitized Solar Cells (DSSCs) have attracted great interests as they offer high energyconversion efficiencies at low cost. For the conventional fabrication of DSSCs, high temperature sintering is required for the construction of interconnect $TiO_2$. However, more simplified process which can be applicable to large-sized solar cells module, is strongly necessary for the commercialization of DSSCs. In this work, we developed novel sintering method using Intense Pulsed Light (IPL), which can replace the conventional high temperature sintering methods. The photovoltaic properties of DSSCs utilizing IPL methods will be reported.

  • PDF

Spray-coated Carbon Nanotube Counter Electrodes for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Lee, Dong-Yun;Kim, In-Sung;Jeong, Soon-Jong;Song, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.140-143
    • /
    • 2005
  • Carbon Nanotube(CNTs) counter electrode is a promising alternative to Platinum counter electrode for dye sensitized solar cells (DSSCs). In this study, CNT counter electrodes having different visible light transmittance were prepared on fluorine-doped tin oxide (FTO) glass surface by spray coating method. Microstructural images show that there are CNT-tangled region coated on FTO glass counter electrodes. Using such CNT counter electrodes and screen printed $TiO_2$ electrodes, DSSCs were assembled and its I-V characteristics have been studied and compared. Light energy conversion efficiency of DSSCs increased with decreasing in light transmittance of CNT counter electrode. Efficiency of DSSCs having CNT counter electrode is compatible to that of Pt counter electrode.

DSSCs Efficiency by Thickness of TiO2 Photoelectrode and Thickness Differences Between Two Substrates (TiO2 광전극 두께와 두 기판 간격에 따른 DSSC의 효율 특성)

  • Park, Han-Seok;Kwon, Sung-Yeol;Yang, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.537-542
    • /
    • 2012
  • DSSCs efficiency by thickness of $TiO_2$ photoelectrode and thickness differences between two substrates studied. DSSCs is made of the doctor blade method and photoelectrode annealing temperature elevated in a different ways. In addition, cells efficiencies of according to the different thickness between $TiO_2$ photoelectrode substrate and Pt counter electrode was measured. Efficiency of DSSCs made with $TiO_2$ photoelectrode of 18 ${\mu}m$ thickness and the gap difference between the substrate 28 ${\mu}m$ shows a highest 4.805% efficiency.

Novel Fabrication of Platinum Counter Electrode in Dye-sensitized Solar Cells Using Nano-second Pulsed Laser Sintering

  • Lee, Jin Ah;Yoo, Kicheon;Kim, Woong;Ko, Min Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.234-234
    • /
    • 2013
  • The counter electrodes in dye-sensitized solar cells (DSSCs) play roles in not only collecting electrons from external circuit but also reducing I3- to I- in electrolytes. Generally, conventional counter electrodes for DSSCs are prepared from the high temperature treatment of the H2PtCl6 precursor solution at $400^{\circ}C$ However, the more simplified fabrication process of counter electrodes is required for the commercialization of DSSCs. In this work, we developed novel fabrication process of counter electrodes using nano-second pulsed laser. DSSCs employing counter electrodes prepared by laser process showed conversion efficiency of 6.75% with short-circuit current of 12.73 mA/cm2, open-circuit voltage of 0.74 V and fill factor of 0.72. Closer investigating of photovoltaic properties will be reported.

  • PDF

Improved Power Conversion Efficiency of Dye-Sensitized Solar Cells Assisted with phosphor materials Scattering layer

  • Lee, Yong-Min;Choi, Hyun Ji;Kim, Dong In;Lee, Yul Hee;Yu, Jung-Hoon;Kim, Jee Yun;Seo, Hyeon Jin;Hwang, Ki-Hwan;Nam, Sang Hun;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.408.2-409
    • /
    • 2016
  • Theoretically, the dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However DSSCs have low power conversion efficiency (PCE) than silicon based solar cells. In this study, we use the phosphor materials, such as $Y_2O_3:Eu$ (Red), $Zn_2SiO_4:Mn$ (Green), $BaMgAl_{14}O_{23}:Eu$ (Blue), to enhance the PCE of DSSCs. Three phosphors were prepared and used as an effective scattering layer on the transparent $TiO_2$ with doctor blade method. We confirmed that the three scattering layers improve the PCE and Jsc due to the light harvesting enhancement via increased the scattering and absorbance in visible range. Under the sun illumination AM 1.5 conditions, the PCE of the mesoporous $TiO_2$ based DSSCs is 5.18 %. The PCE of the DSSCs with Y2O3:Eu, $Zn_2SiO_4:Mn$ and $BaMgAl_{14}O_{23}:Eu$ as scattering layer were enhanced to 5.66 %, 5.72% and 5.82%, respectably. In order to compare the optical properties change, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes of each layer.

  • PDF

Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells (산란 입자를 포함하는 염료감응 태양전지용 $TiO_2$ 전극 제조)

  • Lee, Jin-Hyoung;Lee, Tae-Kun;Kim, Cheol-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2011
  • The energy conversion efficiency of DSSCs (Dye-Sensitized Solar Cells) is dependent on the powder size, the structure, and the morphology of $TiO_2$ electrode. The higher efficiency is obtained with high surface area of the nanoanatase-$TiO_2$ powder adsorbed onto a lot more of the dye. Also, the enhancement of light scattering increases the efficiency with high adsorption of the dye. Powder size, crystalline phase, and shape of $TiO_2$ obtained by hydrothermal method have 15-20 nm, anatase and round. $TiO_2$ electrode has fabricated with the mixture of scattering $TiO_2$ particle with 0.4 ${\mu}m$ in nano-sized powder. Conversion efficiency of series of DSSCs was measured with volume fraction of scattering particle. Photovoltaic characteristics of DSSCs with 10% scattering particles are 3.51 mA for Jsc (short circuit current), 0.79 V for Voc(open circuit potential), filling factor 0.619 and 6.86% for efficiency. Jsc was improved by 11% and enhancement of efficiency by 0.77% compared with that of no scattering particles. The confinement of inserted light by light scattering particles has more increase of the injection of exiton(electron-hole pair) and decrease of moving path in electron. Efficiencies of DSSCs with more than 10% for scattering particles have reduced with increasing the pore in the $TiO_2$ electrode.

Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Rhodamine Dyes (로다민 기반 염료감응형 태양전지의 제조 및 특성 분석)

  • Choi, Kang-Hoon;Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.731-736
    • /
    • 2015
  • Rhodamine B (RhB) was utilized as a dye sensitizer for dye-sensitized solar cells (DSSCs) and its photovoltaic property was examined under the illumination of AM 1.5 G, $100mWcm^{-2}$. DSSCs based on RhB exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.34 V, a short-circuit current ($J_{SC}$) of $1.55mA{\cdot}cm^{-2}$, a fill factor (FF) of 50%, and a conversion efficiency (PCE) of 0.26%. In order to further improve the photovoltaic properties of RhB-based DSSCs, the effect of (i) incorporating a strong electron-donating NCS unit into the RhB molecular backbone, (ii) combining a bis-negatively charged zinc complex anion ($Zn-dmit_2$, dmit=di-mercapto-dithiol-thione) with the amine cation of RhB, (iii) co-adsorbing RhB dyes with chenodeoxycholic acid (CDCA) molecules onto porous $TiO_2$ electrodes, was investigated and discussed.

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer (광산란층을 이용한 염료감응형 태양전지의 특성)

  • Eom, Tae-Sung;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.558-562
    • /
    • 2012
  • As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

Organic Sensitizers based on Bis-carbazole for Dye-Sensitized Solar Cells (비스-카바졸 유기염료를 이용한 염료감응태양전지)

  • Kim, Hyo-Jeong;Byun, Yeo-Jin;Nam, Jung-Eun;Kim, Dae-Hwan;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.397-399
    • /
    • 2012
  • Dye-sensitized solar cells (DSSCs) have received considerable attention as the most promising candidates for renewable energy systems in recent years. Among these, organic dyes which have many advantages such as large absorption coefficients, customized molecular design for desired photophysical and photochemical properties, inexpensiveness and environment-friendliness, are suitable as photosensitizers for DSSCs. We have studied on the design and synthesis of two organic dyes (BECZ 1 and BECZ 2) with a 9-ethyl-9H-carbazole core for dye-sensitized solar cells (DSSCs). Two organic dyes comprised of two 9-ethyl-9H-carbazole moiety as electron-donor, two types of cyanoacrylic acid moiety acting as acceptor. In addition, n-ethyl unit introduced for increasing the solubility and the donating power. The obtained organic dyes were comprehensively characterized by NMR, GC-MS, FAB-MS and UV/Vis spectroscopies. DSSCs sensitized by the dyes BECZ1 and BECZ2 produced ${\eta}$ value 3.31% and a ${\eta}$ value 3.21%.

  • PDF