• Title/Summary/Keyword: DSP System

Search Result 1,535, Processing Time 0.024 seconds

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.

Development of Variable Speed Digital Control System for SRM using Simple Position Detector (간단한 위치검출기를 이용한 SRM 가변속 디지털 제어시스템 개발)

  • 천동진;정도영;이상호;이봉섭;박영록
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 2001
  • A Switched Reluctance Motor(SRM) has double salient poles structure and the phase windings are wound in stator. SRM hase more simple structure that of other motor, thus manufacture cost is low, mechanically strong, reliable to a poor environment such as high temperature, and maintenance cost is low because of brushless. SRM needs position detector to get rotator position information for phase excitation and tachometer or encoder for constant speed operation. But, this paper doesn\`s use an encoder of high cost for velocity measurement of rotator. Instead of it, the algorithm for position detection and velocity estimation from simple slotted disk has been proposed and developed. To implement variable speed digital control system with velocity estimation algorithm, the TMS320F240-20MIPS fixed point arithmetic processor of TI corporation is used. The experimental results of the developing system are enable to control speed with wide range, not only single pulse, hard chopping mode and soft chopping, ut also variable speed control, and advance angle control.

  • PDF

Evaluation of Inertial Measurement Sensors for Attitude Estimation of Agricultural Unmanned Helicopter (농용 무인 헬리콥터의 자세추정을 위한 관성센서의 성능 평가)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • The precision aerial application of agricultural unmanned helicopters has become a new paradigm for small farms with orchards, paddy, and upland fields. The needs of agricultural applications require easy and affordable control systems. Recent developments of MEMS technology based on inertial sensors and high speed DSP have enabled the fabrication of low-cost attitude system. Therefore, this study evaluates inertial MEMS sensors for estimating the attitude of an agricultural unmanned helicopter. The accuracies and errors of gyro and acceleration sensors were verified using a pendulum system. The true motion values were calculated using a theoretical estimation and absolute encoder measurement of the pendulum, and then the sensor output was compared with reference values. When comparing the sensor measurements and true values, the errors were determined to be 4.32~5.72%, 3.53~6.74%, and 3.91~4.16% for the gyro rate and x-, z- accelerations, respectively. Thus, the measurement results confirmed that the inertial sensors are effective for establishing an attitude and heading reference system (AHRES). The sensors would be constructed in gimbals for the estimating and proving attitude measurements in the following paper.

Implementation of Dual-Mode Channel Card for SDR-based Smart Antenna System (SDR기반 스마트 안테나 시스템을 위한 듀얼 모드 채널 카드 구현)

  • Kim, Jong-Eun;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1172-1176
    • /
    • 2008
  • In this paper, we describe the implementation and performance of a dual-mode Software Define Radio (SDR) smart antenna base station system. SDR technology enables a communication system to be reconfigured through software downloads to the flexible hardware platform that is implemented using programmable devices such as Digital Signal Processors (DSPs), Field Programmable Gate Arrays (FPGAs), and microprocessors. The presented base station channel card comprises the physical layer (pHY) including the baseband modem as well as the beamforming module. This channel card is designed to support TDD High-Speed Downlink Packet Access (HSDPA) as well as Wireless Broadband Portable Internet (WiBro) utilizing the SDR technology. We first describe the operations and functions required in WiBro and TDD HSDPA. Then, we explain the channel card design procedure and hardware implementation. Finally, we evaluate WiBro and TDD HSDPA performance by simulation and actual channel-card-based processing. Our smart antenna base-station dual-mode channel card shows flexibility and tremendous performance gains in terms of communication capacity and cell coverage.

Bidirectional Charging/Discharging Digital Control System for Eco-friendly Capacitor Energy Storage Device Implemented by TMS320F28335 chip (TMS320F28335로 구현한 친환경 커패시터 전력저장장치의 양방향 디지털 제어 충/방전 시스템)

  • Lee, Jung-Im;Lee, Jong-Hyun;Jung, An-Yoel;Lee, Choon-Ho;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • Recently, as the demand of the environmental-friendly energy storage system such as an electric double-layer condenser increases, that of the bidirectional charger/discharger for the systems also increases. However, when charging/discharging mode-change occurs, the charger/discharger employing a bi-directional DC-DC converter with a commercialized analog controller has a complex circuit scheme, and a poor transient response. On the other hand, if a single digital controller is used for the bi-directional mode, the system performances can be improved by application of an advanced power-processing algorithm. In the paper, an environmental-friendly power storage systems including an Electric Double Layer Capacitor(EDLC) banks were developed with a bi-directional buck-boost converter and a digital signal processor (TMS320F28335). A simulation test-bed was realized and tested by MATLAB Simulink, and the hardware experiment was performed which shows that the dynamic response was improved such as the simulation results.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Simple On-line Elimination Strategy of Dead Time and Nonlinearity in Inverter-fed IPMSM Drive Using Current Slope Information (IPMSM 드라이브에서 전류 기울기 정보를 이용한 데드타임 및 인버터 비선형성 효과의 간단한 제거 기법)

  • Park, Dong-Min;Kim, Myung-Bok;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.401-408
    • /
    • 2012
  • A simple on-line elimination strategy of the dead time and inverter nonlinearity using the current slope information is presented for a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive. In a PWM inverter-fed IPMSM drive, a dead time is inserted to prevent a breakdown of switching device. This distorts the inverter output voltage, resulting in a current distortion and torque ripple. In addition to the dead time, inverter nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The proposed scheme is based on the fact that the d-axis current ripple is mainly caused by the dead time and inverter nonlinearity. To eliminate such an influence, the current slope information is determined. The obtained current slope information is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments. Without requiring any additional hardware, the proposed scheme can effectively eliminate the dead time and inverter nonlinearity even in the presence of the parameter uncertainty.

A NEW ADAPTIVE BEAM-FORMING ALGORITHM BASED ON GENERALIZED ON-OFF METHOD FOR SMART ANTENNA SYSTEM (스마트 안테나 시스템을 위한 일반화된 ON-OFF방식의 새로운 적응 빔형성 알고리즘)

  • 이정자;안성수;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.984-994
    • /
    • 2003
  • This paper proposes a novel blind adaptive algorithm for computing the weight vector of an antenna array system. The new technique utilizes a Generalized On-Off algorithm to obtain the weight vector maximizing the SINR(Signal to Interference plus Noise Ratio) of the received signal. It is observed that the proposed algorithm generates a suboptimal weight vector with a linear computational load(O(6N+8)). From the various simulations, it is confirmed that, when the signal environment becomes adverse, e.g., low Processing Gain, and/or wide angular spread. the proposed algorithm outperforms the conventional one in terms of the communication capacity by about 3 times. Applying the proposed algorithm to satellite tracking systems as well as IS2000 1X mobile communication system, we have found that both communication capacity and communication quality are significantly improved.

A Study On the Design of a Floating Point Unit for MPEG-2 AAC Decoder (MPEG-2 AAC 복호기를 위한 부동소수점유닛 설계에 관한 연구)

  • 구대성;김필중;김종빈
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.355-355
    • /
    • 2002
  • In this paper, we designed a FPU(floating point unit) that it is very important and requires of high density when digital audio is designed. Almost audio system must support the multi-channel and required for high quality. A floating point arithmetic function in MPEG-2 AAC that implemented by hardware is able to realtime decoding when DSP realization. The reason is that MPEG-2 AAC is compatible to the Audio field of MPEG-4 and afterwards. We designed a FPU by hardware to increase the speed of a floating point unit with much calculation part in the MPEG-2 AAC Decoder. A FPU is composed of a multiplier and an adder. A multiplier used the Radix-4 Booth algorithm and an adder adopted 1's complement method for speed up. A form of a floating point unit has 8bit of exponent part and 24bit of mantissa. It's compatible with the IEEE single precision format and adopted a pipeline architecture to increase the speed of a processor. All of sub blocks are based on ISO/IEC 13818-7 standard. The algorithm is tested by C language and the design does by use of VHDL(VHSIC Hardware Description Language). The maximum operation speed is 23.2MHz and the stable operation speed is 19MHz.

A Security SoC embedded with ECDSA Hardware Accelerator (ECDSA 하드웨어 가속기가 내장된 보안 SoC)

  • Jeong, Young-Su;Kim, Min-Ju;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1071-1077
    • /
    • 2022
  • A security SoC that can be used to implement elliptic curve cryptography (ECC) based public-key infrastructures was designed. The security SoC has an architecture in which a hardware accelerator for the elliptic curve digital signature algorithm (ECDSA) is interfaced with the Cortex-A53 CPU using the AXI4-Lite bus. The ECDSA hardware accelerator, which consists of a high-performance ECC processor, a SHA3 hash core, a true random number generator (TRNG), a modular multiplier, BRAM, and control FSM, was designed to perform the high-performance computation of ECDSA signature generation and signature verification with minimal CPU control. The security SoC was implemented in the Zynq UltraScale+ MPSoC device to perform hardware-software co-verification, and it was evaluated that the ECDSA signature generation or signature verification can be achieved about 1,000 times per second at a clock frequency of 150 MHz. The ECDSA hardware accelerator was implemented using hardware resources of 74,630 LUTs, 23,356 flip-flops, 32kb BRAM, and 36 DSP blocks.