• Title/Summary/Keyword: DRONE

Search Result 1,323, Processing Time 0.026 seconds

Development and Effect of Creative Convergence HTE-STEAM Program using Natural Disaster (자연재해 주제를 활용한 창의융합 HTE-STEAM(융합인재교육) 프로그램 개발 및 효과)

  • Han, Shin;Kim, Yonggi;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • The purpose of this study is to develop HTE-STEAM program using natural disasters for high school students and to verify their attitude and satisfaction with STEAM. We developed the HTE-STEAM program utilizing natural disasters and tested the effectiveness of 243 students from G High School and N High School. For data analysis, a single group pretest and post response t-test were conducted to verify the effects on attitudes and satisfaction with STEAM. The research results are as follows. First, we developed STEAM education programs for high school students by selecting the topic of "natural disasters" in the area of earth science and flying drones as lifesaving drones. The six-hour program was designed to give students the experience to solve problems by applying essential knowledge related to natural disasters and drones, and what they learned in other situations. Second, there was a significant statistical test result in the t-test of the corresponding sample by the difference between the pre and post score of the STEAM attitude test (p <.05). The drone-based HTE-STEAM program had a significant improvement in the overall attitude toward STEAM education, which consists of seven subfactors. Third, in the HTE-STEAM satisfaction test, the average value of the lower job offer was 3.64 ~ 3.76, which showed a positive response overall. It is judged that the students' satisfaction is improved through the students' understanding of the problem situation and the design of creative convergence and production process.

Accuracy Improvement of the ICP DEM Matching (ICP DEM 매칭방법의 정확도 개선)

  • Lee, Hyoseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2015
  • In photogrammetry, GCPs (Ground Control Points) have traditionally been used to determine EOPs (Exterior Orientation Parameters) and to produce DEM (Digital Elevation Model). The existing DEM can be used as GCPs, where the observer’s approach is a difficult area, because it is very restrictive to survey in the field. For this, DEM matching should be performed. This study proposed the fusion method using ICP (Iterative Closest Point) and RT (proposed method by Rosenholm and Torlegard, 1988) in order to improve accuracy of the DEM matching. The proposed method was compared to the ICP method to evaluate its usefulness. Pseudo reference DEM with resolution 10m, and modified DEM (random-numbers are added from 0 to 2 at height; scale is 0.9; translation is 100 meters in 3-D axes; rotation is from 10° to 50° from the reference DEM) were used in the experiment. The results proposed accuracy was highest in the matching and absolute orientation. In the case of ICP, according to rotation of the modified DEM being increased, absolute orientation error is increased, while the proposed method generally showed consistent results without increasing the error. The proposed method would be applied to matching when the DEM is modified up to 30° rotation, compared to the reference DEM, based on the results of experiments. In addition when we use Drone, this method can be utilized to identify EOPs or detect 3-D surface deformation from the existing DEM of the inaccessible area.

Recent Developments and Field Application of Foreign Waterworks Automatic Meter Reading (국외 상수도 원격검침시스템의 개발 동향 및 현장 적용 사례 고찰)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuk;Ko, Kyung-Rok;Oh, Hyun-Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.863-870
    • /
    • 2012
  • The market trends of automatic meter reading associated with smart water meters were investigated. Also, recent developments and field applications of key technology for automatic meter reading associated with smart water meters were analyzed. Smart water meters have been manufactured mostly in United States and Europe and have been expanded their business to Asia. Integrated water management system combining with the additional functions such as real-time consumption metering, cost notification, water conservation, leak detection, water quality monitoring, and flow control have been operated in automatic meter reading. Both water quality and quantity data measured from smart water meters and sensors were transferred to data concentration units through neighborhood area network, and then were transferred to integrated server through wide area network. The data transfer methods were determined by comprehensively considering urban scale, density of smart water meters, power supply and network topologies. Common data collection methods such as fixed network to data concentation units, vehicles drive by, people walk by, and drone fly by have been applied. The automatic meter reading associated with smart water meters are spread throughout the world, and both water and energy savings result in saving the money and reducing the greenhouse gases emission.

A Study of Establishing the Development Strategy of Construction Project Management System Using SWOT Analysis (SWOT분석을 통한 건설사업관리시스템 개발전략 수립에 관한 연구)

  • Kim, SeongJin;Ok, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.86-93
    • /
    • 2016
  • Information technology, such as IoT, Big Data, Drone, Cloud etc., is evolving every year. Information Society is changing Intelligence Society and Creative Society. A new Construction Projects Management System Roadmap is required because it is difficult to reflect the current IT environments based on the CALS(Continuous Acquisition & Life-cycle Support) master plan, which is performed to establish every five years since 1998. This study was prepared for the Roadmap with a focus on Construction Management System based on the 4th CALS master plan, which was performed to establish the 2012 year. To this end, the construction environment and several information systems were investigated and analyzed. The problems of the construction project information system were derived using SWOT analysis, the vision, goal, direction, strategy, main tasks, specific tasks, and timetable of the Construction Project Management System are presented. This roadmap is designed to be used as operational indicators of a future construction project management system.

Lightweight Authentication Scheme for Secure Data Transmission in Terrestrial CNPC Links (지상 CNPC 링크에서 안전한 데이터 전송을 위한 경량화된 인증기법)

  • Kim, Man Sik;Jun, Moon-Seog;Kang, Jung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.429-436
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) that are piloted without human pilots can be commanded remotely via frequencies or perform pre-inputted missions. UAVs have been mainly used for military purposes, but due to the development of ICT technology, they are now widely used in the private sector. Teal Group's 2014 World UAV Forecast predicts that the UAV market will grow by 10% annually over the next decade, reaching $ 12.5 billion by 2023. However, because UAVs are primarily remotely controlled, if a malicious user accesses a remotely controlled UAV, it could seriously infringe privacy and cause financial loss or even loss of life. To solve this problem, a secure channel must be established through mutual authentication between the UAV and the control center. However, existing security techniques require a lot of computing resources and power, and because communication distances, infrastructure, and data flow are different from UAV networks, it is unsuitable for application in UAV environments. To resolve this problem, the study presents a lightweight UAV authentication method based on Physical Unclonable Functions (PUFs) that requires less computing resources in the ground Control and Non-Payload Communication (CNPC) environment, where recently, technology standardization is actively under progress.

Application of Deep Learning Method for Real-Time Traffic Analysis using UAV (UAV를 활용한 실시간 교통량 분석을 위한 딥러닝 기법의 적용)

  • Park, Honglyun;Byun, Sunghoon;Lee, Hansung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.353-361
    • /
    • 2020
  • Due to the rapid urbanization, various traffic problems such as traffic jams during commute and regular traffic jams are occurring. In order to solve these traffic problems, it is necessary to quickly and accurately estimate and analyze traffic volume. ITS (Intelligent Transportation System) is a system that performs optimal traffic management by utilizing the latest ICT (Information and Communications Technology) technologies, and research has been conducted to analyze fast and accurate traffic volume through various techniques. In this study, we proposed a deep learning-based vehicle detection method using UAV (Unmanned Aerial Vehicle) video for real-time traffic analysis with high accuracy. The UAV was used to photograph orthogonal videos necessary for training and verification at intersections where various vehicles pass and trained vehicles by classifying them into sedan, truck, and bus. The experiment on UAV dataset was carried out using YOLOv3 (You Only Look Once V3), a deep learning-based object detection technique, and the experiments achieved the overall object detection rate of 90.21%, precision of 95.10% and the recall of 85.79%.

Estimating Visitors on Water-friendly Space in the River Using Mobile Big Data and UAV (통신 빅데이터와 무인기 영상을 활용한 하천 친수지구 이용객 추정)

  • Kim, Seo Jun;Kim, Chang Sung;Kim, Ji Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 2019
  • Recently, 357 water-friendly space were established near the main streams of the country through the Four Major Rivers Project, which was used as a resting and leisure space for the citizens, and the river environment and ecological health were improved. We are working hard to reduce the number of points and plan and manage the water-friendly space. In particular, attempts are being made to utilize mobile big data to make more scientific and systematic research on the number of users. However, when using mobile big data compared to the existing method of conducting field surveys, it is possible to easily identify spatial user movement patterns, but it is different from the actual amount of use, so various verifications are required to solve this problem. Therefore, this study evaluated the accuracy of estimating the number of users using mobile big data by comparing the number of visitors using mobile big data and the number of visitors using drone for Samrak ecological park located in the mouth of Nakdong River. As a result, in the river hydrophilic district, it was difficult to accurately estimating the usage pattern of each facility due to the low precision of pCELL, and it was confirmed that the usage patterns in the park could be distorted due to the signals stopped at roads and parking lots. Therefore, it is necessary to improve the number of pCELLs in the water-friendly space and to estimate the number of visitors excluding facilities such as roads and parking lots in future mobile big data processing.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

Segmentation of Seabed Points from Airborne Bathymetric LiDAR Point Clouds Using Cloth Simulation Filtering Algorithm (항공수심라이다 데이터 해저면 포인트 클라우드 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Lee, Jae Bin;Jung, Jae Hoon;Kim, Hye Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • ABL (Airborne Bathymetric LiDAR) is an advanced survey technology that uses green lasers to simultaneously measure the water depths and oceanic topography in coastal and river areas. Seabed point cloud extraction is an essential prerequisite to further utilizing the ABL data for various geographic data processing and applications. Conventional seabed detection approaches often use return waveforms. However, their limited accessibility often limits the broad use of the bathymetric LiDAR (Light Detection And Ranging) data. Further, it is often questioned if the waveform-based seabed extraction is reliable enough to extract seabed. Therefore, there is a high demand to extract seabed from the point cloud using other sources of information, such as geometric information. This study aimed to assess the feasibility of a ground filtering method to seabed extraction from geo-referenced point cloud data by using CSF (Cloth Simulation Filtering) method. We conducted a preliminary experiment with the RIGEL VQ 880 bathymetric data, and the results show that the CSF algorithm can be effectively applied to the seabed point segmentation.

A Study on the Feasibility of Geomagnetic Declination Investigation at Unified Control Points in South Korea (국내 통합기준점에서 지자기 편각 조사의 타당성 연구)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.29-38
    • /
    • 2016
  • As publicizing of electromagnetic devices such as smart_phone and drone etc. which are relate with geomagnetic direction, and recognition about the importance to space weather effect and their hazards rises up recently, it is required heavily that the study on the effective measurement of geomagnetic declination and geomagnetic field effects of space weather. The purpose of this study is that the investigation of the feasibility of the absolute geomagnetic measurement in a place, where man-made geomagnetic contamination is low or negligible, with replacing the azimuth marks used for the absolute geomagnetic declination measurement with unified control points(UCP) which established at suburb. Further to this, have first derived the correlation of daily variations and disturbance level between the published indices($K_P$ and $K_K$) and geomagnetic element calculated from geomagnetic data of Cheongyang observatory located at the middle stage in Korea and is a member of INTERMAGNET. In addition, have carried out that the absolute measurement for the geomagnetic declination at three places near unified control point and one place with wide open field in Korea. The world magnetic models(WMMs) are selected as the criteria for comparison on the feasibility of geomagnetic declination investigation near unified control points. We compared deviations of declination from absolute measurement with that obtained from WMMs, also those from WMMs inter-comparison. The result through examination and analysis show that the feasibility of the absolute geomagnetic declination measurement with replacing the azimuth marks with UCP which established at suburb is possible.