• Title/Summary/Keyword: DRO

Search Result 50, Processing Time 0.029 seconds

Investigation on the Output Power Improvement of Push-Push FET DRO with an Additional DR (Push-Push FET DRO에 부가된 유전체 공진기의 전력 증강 역할에 관한 분석)

  • 박승욱;김인석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1170-1175
    • /
    • 2003
  • In this paper, the output power improvement of Push-Push FET DRO by adding the identical DR at the drain port as one used in the gate port, has been theoretically investigated. The investigation shows that the DR located between two microstrip lines locks the phase difference of two FET's outputs at 180 degree and improves the output power of Push-Push FET DRO. Since this effect can be used for correcting the impedance difference between two FETs output circuits and the electrical length error of the power combiner at the output circuit of Push-Push DRO, which may occur when fabricate the oscillator, the oscillator with an additional DR can be useful structure for fabricating oscillator.

An Approximate Gaussian Edge Detector (근사적 가우스에지 검출기)

  • 정호열;김회진;최태영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.709-718
    • /
    • 1992
  • A new edge detection operator superimposing two displaced Gaussian smoothing filters Is proposed as an approximate operator for the DroG(flrst derivative of Gaussian) known as a sub-op-timal step edge detector. The performance of the proposed edge detector Is very close to that of the DroG with the performance criteria . signal to noise ratio, locality, and multiple response. And the computational complexity can be reduced almost by a half of that of DroG, because of the use of common 2-D smoothing filter for DroG and LoG ( Laplacian of Gausslan) systems.

  • PDF

A Dielectric Resonator Oscillator for DSRC with Improved Phase Noise Characteristic (위상잡음 특성을 개선한 DSRC용 운전체 공진 발진기)

  • Lee Young-Joon;Kim Hyun-Jin;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • In this paper, a DRO (Dielectric Resonator Oscillator) with high stability in DSRC(Dedicated Short Range Communication) is designed and fabricated. The DRO shows the phase noise characteristic of -109.3 dBc/Hz at 100 kHz offset from the fundamental frequency. The output power of 11.53 dBm, and the second harmonic suppression of 55.33 dBc for the DRO are obtained. This DRO with high stability of the phase noise characteristic can be used for the system in DSRC.

  • PDF

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

Output Power Improvement of Push-Push FET DRO with an Additional DR (DR 2개를 이용한 Push-Push FET DRO의 출력 증가)

  • Kim, Ihn S.;Jo, Chisung;Han, Yongin
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • In this paper, the output power level and phase noise property of nine conventional push-push FET DROs (Dielectric Resonator Oscillator) have been experimentally investigated by adding one more identical DR at the drain port. The nine oscillators designed to generate 20 GHz from 10 GHz fundamental frequency, have been tested for each of three different power combiners at the output port. It has been observed that the output power level of the push-push FET DROs can be improved by placing the DR while maintaining their phase noise characteristics were approximately the same as before adding the DR.

  • PDF

Design and Fabrication of the Push-push Dielectric Resonator Oscillator using a LTCC (LTCC를 이용한 push-push 유전체 공진 발진기의 설계 및 제작)

  • Ryu, Keun-Kwan;Oh, Eel-Deok;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.541-546
    • /
    • 2010
  • The push-push DRO(dielectric resonator oscillator) using a multi-layer structure of LTCC(low temperature co-fired ceramic) fabrication is designed. After the single DRO of series feedback type in the center frequency of 8GHz is designed, the push-push DRO in the center frequency of 16GHz including the Wilkinson power combiner is designed. The bias circuit affecting the size of oscillator are embedded in the intermediate layer of the LTCC multi-layer substrate. As a result, the large reduction in the size of VCO is obtained compared to the general oscillator on the single layer substrate. Experimental results show that the fundamental and third harmonics suppression are above 15dBc and 25dBc, respectively, and phase noise characteristics of the push-push DRO presents performance of -102dBc/Hz@100KHz and -128dBc/Hz@1MHz offset frequencies from carrier.

Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline (현장조사 관개 기준에 따른 농업용 저수지 운영 분석)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pu Reun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.

Design and Fabrication of Wide Electrical Tuning Range DRO Using Open-Loop Method (개루프 방법에 의한 확장된 전기적주파수조정범위를 갖는 유전체공진기발진기의 설계 및 제작)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.570-579
    • /
    • 2009
  • In this paper, we presented a Vt-DRO with a wide electrical frequency tuning range, using open-loop gain method. The Vt-DRO was composed of 3-stages, resonator, amplifier and phase shifter. In order to satisfy an oscillation condition, we determined magnitude and phase of each stage. The measured S-parameter of cascaded 3-stages shows open-loop oscillation condition. Also, using measured open loop group delay, we derived the relation for electrical frequency tuning range. The Vt-DRO was implemented by connecting the input and the output of the designed open-loop and resulted in closed-loop. As a results, tuning-range of Vt-DRO is 82 MHz, which is close to the predicted results for tuning voltage 0${\sim}$10 V and shows linear frequency tuning at the center frequency of 5.3 GHz. The phase noise is -104 ${\pm}$1 dBc/Hz at 100 kHz offset frequency and power is 5.86${\pm}$1 dBm respectively.

Design and Fabrication of Ka-band Push-push oscillator Using Dielectric Resonator (유전체 공진기를 이용한 Ka-band용 Push-push 발진기의 설계 및 구현)

  • 김민호;김병희;박천석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.385-388
    • /
    • 2000
  • In this paper, the Ka-band Dielectric resonator oscillator has been designed and fabricated. The resonator network was simulated using HFSS program. The design method of an oscillator is the small-signal S-parameter design. The Push-push DRO employs a hetero junction FET (NE32484A). The fabricated Push-push DRO shows such characteristics as the phase noise -106 ㏈c/Hz at the 100 ㎑ frequency offset. the output power and fundamental frequency surpression were -6 ㏈m and -29 ㏈c, respectively.

  • PDF

Desitgn of push-push osciplier using even-odd mode analysis (Even-odd mode 해석을 이용한 push-push osciplier의 설계)

  • 주한기;송명선;임성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.514-525
    • /
    • 1996
  • In this paper, Push-push Osciplier(Oscillator + Multiplier) has been analyzed by even-odd mode analysis method. A 10GHz DRO, an Osciplier using 10GHz DRO design method and an Osciplier using even-odd mode analysis method were designed, fabricated and tested to verify this method. The measured results verified the validity of the analysis method using even-odd mode analysis.

  • PDF