• 제목/요약/키워드: DRIVE MOTION

검색결과 452건 처리시간 0.025초

직접구동식 스카라 로봇의 개발 및 개인용 컴퓨터를 이용한 기초 힘/운동 제어 (Development of a Direct Drive Scara Robot Manipulator and PC-Based Preliminary Force/Motion Control)

  • Kim, D.H.;Park, D.Y.;Park, H.S.
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.25-31
    • /
    • 1995
  • In this paper, a direct drive scalar robot manipulator is constructed and its mechanical machanism for operation is explained. Also, a motion controller board for the direct drive robot manipulator was developed where the IBM 486 computer is the main controller. For the developed direct drive robot, a force/motion control algorithm based on an active compliance scheme is developed. A preliminary experiment using the developed direct drive for a peg-in-hole job was done by implementing the control algorithm.

  • PDF

스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구 (A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism)

  • 이상욱;전종업
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.

카드자판기 구동부의 성능 향상에 관한 연구 (A Study on Performance Improvement of the Motion Drive of a Card Vending Machine)

  • 남명현;강철구
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.357-363
    • /
    • 2004
  • Earlier models of card vending machines have generally motion drives with high cost and large size. However, current trend in card vending machines requires low-cost, compact-sized and readily installable motion drives. This paper shows the operational principle of the motion drive of a card vending machine and then presents the performance test results of the motion drive with improved mechanisms proposed in the paper. The results show that the proposed mechanism is valid and improves the card dispensing performance. The proposed model in the paper is accepted and introduced in the actual production line.

SIDM(Smooth Impact Drive Mechanism)을 이용한 초정밀 회전기구에 대한 연구 (A Study on the Ultra Precision Rotational Device using Smooth Impact Drive Mechanism)

  • 이상욱;전종업;박규열;부경석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.485-486
    • /
    • 2006
  • This paper represents a ultra precision rotational device where the smooth impact drive mechanism(SIDM) is utilized as a driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction bars which are attached to the piezoelectric elements. This device was designed to drive a rotational disk using slip-slip motion mechanism based on stick-slip motion mechanism. Experimental results show that the angular velocity was increased in proportion to the magnitude of supplied voltage to piezoelectric element. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V. The amount of step movement has been revealed to be $3.44{\times}10^{-4}$ radian.

  • PDF

Water-jet Cleaning Motion of the In-Pipe Robot with Screw Drive Inside the Water Pipes

  • Kang, Hoon;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.894-901
    • /
    • 2012
  • For more efficient use of the high pressure water-jet in rehabilitation of the water pipes, we have studied the water-jet cleaning motion of the in-pipe robot with screw drive. The mathematical models of the water-jet in the straight and the curved pipe (90 degrees elbow), representative features of the water mains, were designed to understand the water-jet motion and simulations have been performed. Furthermore the experiments has been conducted to validate the simulations by using the prototype in-pipe robot in the 3-D pipeline. The simulation results show that the water-jet motion in the straight pipe has a constant water-jet interval, whereas the motion in the curved pipe is changed by its position. By the comparison of the simulation and the experimental results, we have demonstrated that the simulations successfully estimate the water-jet motion inside the water pipes. Therefore in-pipe robot operators can predict a water-jet motion for a target water pipe through the simulation and flexibly make a proper water-jet motion by changing the robot configurations before a cleaning work.

외란관측기를 이용한 모션 스테이지의 위치제어 (Position Control of Motion Stage using Disturbance Observer)

  • 박해준;최명수;변정환
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.82-88
    • /
    • 2013
  • For commercialized servo drives of the motion stage to include embedded controller, external terminal is provided for tracking command and encoder output, but internal terminal is not for control input. Thus, it is difficult to combine out signal of embedded controller with that of external compensator such as disturbance observer. In this study, for precise tracking control of motion stage without hardware change of the servo drive, tacking control system is composed of an inner loop of servo drive and an outer loop of disturbance observer. Then, the control system is designed so that the output response of actual plant corresponds with nominal model's in transient state as well as in steady state. Finally, the experiment results show that the designed control system is effective to reconcile actual plant behavior with nominal model under nonlinear friction and parameter perturbation.

복합공작기계의 이송계 운동정밀도 측정의 연구 (A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool)

  • 고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.112-118
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

복합공작기계의 이송계 운동정밀도 측정의 연구 (A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool)

  • 고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.31-37
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법 (A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive)

  • 유정래;문정호
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.