• 제목/요약/키워드: DRIFTS

검색결과 269건 처리시간 0.024초

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.

Probabilistic seismic performance assessment of self-centering prestressed concrete frames with web friction devices

  • Song, Long L.;Guo, Tong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.109-118
    • /
    • 2017
  • A novel post-tensioned self-centering (SC) concrete beam-column connection with web friction devices has been proposed for concrete moment-resisting frames. This paper presents a probabilistic performance evaluation procedure to evaluate the performance of the self-centering concrete frame with the proposed post-tensioned beam-column connections. Two performance limit states, i.e., immediate occupancy (IO) and repairable (RE) limit states, are defined based on peak and residual story drift ratios. Statistical analyses of seismic demands revealed that the dispersion of residual drifts is larger than that of peak drifts. Due to self-centering feature of post-tensioning connections, the SC frame was found to have high probabilities to be recentered under the design basis earthquake (DBE) and maximum considered earthquake (MCE) ground motions. Seismic risk analysis was performed to determine the annual (50-year) probability of exceedance for IO and RE performance limit states, and the results revealed that the design objectives of the SC frame would be met under the proposed performance-based design approach.

FRP자켓 시스템이 보강된 비내진 철근콘크리트 골조의 실물 크기 강제 진동 실험 (Forced Vibration Testing of Full-scale Non-seismic Reinforced Concrete Frame Structure Retrofitted Using FRP Jacketing System)

  • 신지욱
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.281-289
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.

Seismic risk assessment of deficient reinforced concrete frames in near-fault regions

  • Cao, Vui Van;Ronagh, Hamid Reza;Baji, Hassan
    • Advances in concrete construction
    • /
    • 제2권4호
    • /
    • pp.261-280
    • /
    • 2014
  • In many parts of the world, reinforced concrete (RC) buildings, designed and built in accordance with older codes, have suffered severe damage or even collapse as a result of recent near-fault earthquakes. This is particularly due to the deficiencies of most of the older (and even some of the recent) codes in dealing with near fault events. In this study, a tested three-storey frame designed for gravity loads only was selected to represent those deficient buildings. Nonlinear time history analyses were performed, followed by damage assessment procedures. The results were compared with experimental observation of the same frame showing a good match. Damage and fragility analyses of the frame subjected to 204 pulse-type motions were then performed using a selected damage model and inter-storey drifts. The results showed that the frame located in near-fault regions is extremely vulnerable to ground motions. The results also showed that the damage model better captures the damage distribution in the frame than inter-storey drifts. The first storey was identified as the most fragile and the inner columns of the first storey suffered most damage as indicated by the damage index. The findings would be helpful in the decision making process prior to the strengthening of buildings in near-fault regions.

Long-term stabilized metal oxide-doped SnO2 sensors

  • 박미옥;최순돈;민봉기;임준우
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.295-302
    • /
    • 2008
  • $TiO_2,\;ZrO_2$, and $SiO_2$ were added in the concentration of 1 - 3 wt.% to improve long-term stability for the $SnO2$ thick film gas sensor. Short-term sensor resistances up to 90 h were measured to investigate the stabilization time of initial resistance in air. Long-term resistance drifts in air and in gas to 5000 ppm methane for the sensors annealed at $750^{\circ}C$ for 1 h and continuously heated at an operating temperature of $400^{\circ}C$ were also measured up to 90 days at an interval of 1 day. The long-term drifts in methane sensitivity for the three metal oxide-doped $SnO2$ sensors are closely related to methane sensitivity level, catalytic activity, and long-term drift in sensor resistance in air. Those stabilities are mainly discussed in terms of oxidation state and catalytic activity.

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.