• 제목/요약/키워드: DRIFT

검색결과 2,384건 처리시간 0.028초

지각판 운동 모델의 변천과 현황 (Lithospheric Plate Motion Model: Development and Current Status)

  • 나성호;조정호
    • 한국지구과학회지
    • /
    • 제43권6호
    • /
    • pp.661-679
    • /
    • 2022
  • 대륙이동설로부터 시작되었고 이후 고지자기 및 해저퇴적물 등의 증거들에 의한 해저확장설을 통하여 정립된 판구조론은, 지각의 운동을 몇 개의 강체 판들이 비록 느리지만 수억 년 이상의 긴 시간 동안 꾸준히 일어나는 움직임으로서 설명하였다. 초기에는 지각판의 속도를 주로 수백만 년 동안의 고지자기 역전의 잔류 기록에 의거하여 판들 간의 상대적 운동으로 추산하였는데, 1980년대 이후에는 우주측지 기법들을 이용하여 현재 시점의 판운동을 직접적으로 조사할 수 있게 되었고, 일부 지역에서 판의 변형이 일어나는 것도 확인하게 되었다. 본 해설에서는 (1) 초기의 상대적인 판운동을 나타내는 모델들을 돌아보고, (2) 무회전 좌표계의 이론과 절대판운동 모델들을 요약-기술하며, (3) 판내부의 변형을 포함하는 최근의 모델을 소개하는 한편, (4) 국제 지구 기준계에 채택된 판운동 모델을 간략히 기술하였고, 끝으로 (5) 근래에 보고된 남미, 남극, 유럽 등 몇 지역과 (6) 한반도 및 동북아의 지각판 움직임 연구를 각각 소개하였다.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

An improved extended Kalman filter for parameters and loads identification without collocated measurements

  • Jia He;Mengchen Qi;Zhuohui Tong;Xugang Hua;Zhengqing Chen
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.131-140
    • /
    • 2023
  • As well-known, the extended Kalman filter (EKF) is a powerful tool for parameter identification with limited measurements. However, traditional EKF is not applicable when the external excitation is unknown. By using least-squares estimation (LSE) for force identification, an EKF with unknown input (EKF-UI) approach was recently proposed by the authors. In this approach, to ensure the influence matrix be of full column rank, the sensors have to be deployed at all the degrees-of-freedom (DOFs) corresponding to the unknown excitation, saying collocated measurements are required. However, it is not easy to guarantee that the sensors can be installed at all these locations. To circumvent this limitation, based on the idea of first-order-holder discretization (FOHD), an improved EKF with unknown input (IEKF-UI) approach is proposed in this study for the simultaneous identification of structural parameters and unknown excitation. By using projection matrix, an improved observation equation is obtained. Few displacement measurements are fused into the observation equation to avoid the so-called low-frequency drift. To avoid the ill-conditioning problem for force identification without collocated measurements, the idea of FOHD is employed. The recursive solution of the structural states and unknown loads is then analytically derived. The effectiveness of the proposed approach is validated via several numerical examples. Results show that the proposed approach is capable of satisfactorily identifying the parameters of linear and nonlinear structures and the unknown excitation applied to them.

수관만의 해수유동과 확산지성에 관한 연구 (A Study on the Characteristics of the Circulation and Diffusion in Suyeong Bay)

  • 김영섭;한영호
    • 수산해양기술연구
    • /
    • 제18권2호
    • /
    • pp.55-61
    • /
    • 1982
  • 표류병 및 염료확산실험을 통하여 수영만의 해수유동과 확산특성을 조사하였다. 밀물 때 해수는 동백섬 남서단에서 시계방향으로 돌아서 동백섬 서단으로 흐르고, 이기대 북동단 부근에서는 반시계방향으로 돌아서 동국제강 앞쪽으로 흘렀다. 이때 유속은 동백섬쪽에서 약 1놋트 정도였고 이기대 부근에서 약 0.3놋트였다. 썰물 때 해수는 수영강 하구와 동백섬 남서쪽으로부터 만의 중앙부근을 거쳐 만외로 흘러나가고 남천동과 동국제강 앞쪽에서는 시계방향으로 돌아서 수영강 하구에서 흘러나오는 해수와 합류하여 만 바깥으로 흘러 나갔다. 유속은 만의 중앙과 남천동 앞쪽으로 약 1놋트 정도로 빨랐고 광안해수욕장 앞에서 약 0.2놋트 정도로 느렸다. 염료의 확산성은 광안해수욕장 쪽으로 이동하였으며 90분 후 겉보기 확산계수는 3.9$\times$10 super(2) cm super(2)/sec 정도였다. 이 값은 진해의 1.2$\times$10 super(3) cm super(2) /sec 보다는 큰 값이지만 고리해역의 7-8$\times$10 super(3) cm super(2) /sec에 비하여 1/2에 불과하다. 확산시간에 대한 분산지수는 2.9, 확산규모에 대한 겉보기 확산계수는 1.3으로 나타났다.

  • PDF

Observations for the Ionosphere Using European Incoherent Scatter (EISCAT) in the Dayside Polar Cap/Cusp and Auroral Region

  • Geonhwa Jee;Eun-Young Ji;Eunsol Kim;Young-Sil Kwak;Changsup Lee;Hyuck-Jin Kwon;Ji-Eun Kim;Young-Bae Ham;Ji-Hee Lee;Jeong-Han Kim;Tae-Yong Yang;Hosik Kam
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권1호
    • /
    • pp.1-10
    • /
    • 2023
  • Korea Polar Research Institute (KOPRI) and Korea Astronomy and Space Institute (KASI) have been participating in the European Incoherent Scatter (EISCAT) Scientific Association as an affiliate institution in order to observe the polar ionosphere since 2015. During the period of December 16-21, 2016 and January 3-9, 2018, the observations for the polar ionospheric parameters such as the electron density profiles, ion drift, and electron/ion temperature are carried out in the polar cap/cusp region by the EISCAT Svalbard radar (ESR). The purpose of the observations is to investigate the characteristic of the winter ionosphere in the dayside polar cap/cusp region. In this paper, we briefly report the results of the ESR observations for winter daytime ionosphere and also the simultaneous observations for the ionosphere-thermosphere system together with the balloon-borne instrument High-Altitude Interferometer WIND Experiment (HIWIND) performed by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR). We further introduce our research activities using long-term EISCAT observations for the occurrence of ion upflow and the climatology of the polar ionospheric density profiles in comparison with the mid-latitude ionosphere. Finally, our future research plans will briefly be introduced.

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

분산형 집단에너지 정책변동 연구: 에너지 데이터 기반의 국가 열지도 사업을 중심으로 (A Study on Distributed Collective Energy Policy Changes: Focusing on the National Heat Map Project Based on Energy Data)

  • 박은숙;박용성
    • 지식경영연구
    • /
    • 제24권1호
    • /
    • pp.195-221
    • /
    • 2023
  • 전 세계적인 에너지·기후 위기는 각국의 이해관계가 복잡하게 얽혀있어 글로벌 대응이 필수적인 아젠다임이 최근 다시금 환기되고 있다. 특히, 우리나라는 에너지 수입의존도가 높고 에너지 다소비·저효율 소비 및 온실가스 다(多) 배출구조가 지속되고 있어 에너지효율 및 탄소중립 달성을 위한 혁신적이고 실효성 있는 에너지정책이 절실하다고 하겠다. 본 연구에서는 우리나라에 1980년대 중반 집단에너지 방식이 도입된 이후의 분산형 집단에너지 정책변동 중 "국가 열(熱) 지도 사업" 정책 추진사례를 수정 다중흐름모형으로 분석하고자 한다. 연구 대상 기간인 이명박-박근혜 정부의 10년간은 에너지정책의 주된 패러다임이 "분산형 에너지플랫폼"으로 전환하는 데 있어 정책의제 설정과 정책 표류, 정책수정의 전환이 이루어졌던 기간으로서 연구에 의미가 있을 것이다.

단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘 (Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles)

  • 박예은;강지윤;박민수;노효웅;박홍식
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Elnaz Zare;Mohammad Gholami;Esmail Usefvand;Mojtaba Gorji Azandariani
    • Earthquakes and Structures
    • /
    • 제24권5호
    • /
    • pp.317-331
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

Molecular diversity of the VP2 of Carnivore protoparvovirus 1 (CPV-2) of fecal samples from Bogotá

  • Galvis, Cristian Camilo;Jimenez-Villegas, Tatiana;Romero, Diana Patricia Reyes;Velandia, Alejandro;Taniwaki, Sueli;Silva, Sheila Oliveira de Souza;Brandao, Paulo;Santana-Clavijo, Nelson Fernando
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.14.1-14.11
    • /
    • 2022
  • Background: Carnivore protoparvovirus 1, also known as canine parvovirus type 2 (CPV-2), is the main pathogen in hemorrhagic gastroenteritis in dogs, with a high mortality rate. Three subtypes (a, b, c) have been described based on VP2 residue 426, where 2a, 2b, and 2c have asparagine, aspartic acid, and glutamic acid, respectively. Objectives: This study examined the presence of CPV-2 variants in the fecal samples of dogs diagnosed with canine parvovirus in Bogotá. Methods: Fecal samples were collected from 54 puppies and young dogs (< 1 year) that tested positive for the CPV through rapid antigen test detection between 2014-2018. Molecular screening was developed for VP1 because primers 555 for VP2 do not amplify, it was necessary to design a primer set for VP2 amplification of 982 nt. All samples that were amplified were sequenced by Sanger. Phylogenetics and structural analysis was carried out, focusing on residue 426. Results: As a result 47 out of 54 samples tested positive for VP1 screening, and 34/47 samples tested positive for VP2 980 primers as subtype 2a (n = 30) or 2b (n = 4); subtype 2c was not detected. All VP2 sequences had the amino acid, T, at 440, and most Colombian sequences showed an S514A substitution, which in the structural modeling is located in an antigenic region, together with the 426 residue. Conclusions: The 2c variant was not detected, and these findings suggest that Colombian strains of CPV-2 might be under an antigenic drift.