• Title/Summary/Keyword: DQnA

Search Result 64, Processing Time 0.026 seconds

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

Reinforcement Learning-based Approach for Lego Puzzle Generation (강화학습을 이용한 레고 퍼즐 생성 기술 개발)

  • Park, Cheolseong;Yang, Heekyung;Min, Kyungha
    • Journal of Korea Game Society
    • /
    • v.20 no.3
    • /
    • pp.15-24
    • /
    • 2020
  • We present a reinforcement learning-based framework for generating 2D Lego puzzle from input pixel art images. We devise heuristics for a proper Lego puzzle as stability and efficiency. We also design a DQN structure and train it to maximize the heuristics of 2D Lego puzzle. In legorization stage, we complete the layout of Lego puzzle by adding a Lego brick to the input image using the trained DQN. During this process, we devise a region of interest to reduce the computational loads of the legorization. Using this approach, our framework can present a very high resolutional Lego puzzle.

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

A study on Convergent & Adaptive Quality Analysis using DQnA model (데이터 품질 분석 모델(DQnA)을 이용한 융합적·적응적 품질 분석에 관한 연구)

  • Kim, Yong-Won
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • Now, almost enterprise is applying data analysis method using the information systems on based information technology. The data analysis is focusing on the Quality of the data affecting the decision-making of various companies. This is the result of the data quality is due to the important role in the various parts as well as the effective operation of the enterprise. In this study, we describe about the data quality assessment models that are currently being studied. Based on this, we describe about the adaptive DQnA model being utilized for data quality analysis, and discuss about the quality analysis using this method.

Improved Deep Q-Network Algorithm Using Self-Imitation Learning (Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘)

  • Sunwoo, Yung-Min;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning is a simple off-policy actor-critic algorithm that makes an agent find an optimal policy by using past good experiences. In case that Self-Imitation Learning is combined with reinforcement learning algorithms that have actor-critic architecture, it shows performance improvement in various game environments. However, its applications are limited to reinforcement learning algorithms that have actor-critic architecture. In this paper, we propose a method of applying Self-Imitation Learning to Deep Q-Network which is a value-based deep reinforcement learning algorithm and train it in various game environments. We also show that Self-Imitation Learning can be applied to Deep Q-Network to improve the performance of Deep Q-Network by comparing the proposed algorithm and ordinary Deep Q-Network training results.

Development of Optimal Design Technique of RC Beam using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 RC보 최적설계 기술개발)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.

A Study on Stock Trading using DQN Reinforcement Learning (DQN 강화학습을 이용한 주식 트레이딩에 관한 연구)

  • Ji-Won Baek;Dae-Won Seo;Ju-hye Song;In-Hyuk Jeong;Gyuyoung Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.906-907
    • /
    • 2023
  • 본 연구는 변동성이 높은 주식시장에서 안정적인 수익창출에 기여할 수 있는 주가예측 강화학 모델을 제안한다. DQN 알고리즘과 LSTM 신경망을 이용하여 시장의 흐름에 따라 전략을 달리하는 모델을 개발하고, 이를 활용한 주식 트레이딩 시스템의 유용성을 확인하고 발전 방향을 제시한다.

An Intelligent Video Streaming Mechanism based on a Deep Q-Network for QoE Enhancement (QoE 향상을 위한 Deep Q-Network 기반의 지능형 비디오 스트리밍 메커니즘)

  • Kim, ISeul;Hong, Seongjun;Jung, Sungwook;Lim, Kyungshik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.188-198
    • /
    • 2018
  • With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.

Digital Twin and Visual Object Tracking using Deep Reinforcement Learning (심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적)

  • Park, Jin Hyeok;Farkhodov, Khurshedjon;Choi, Piljoo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

Research on Unmanned Aerial Vehicle Mobility Model based on Reinforcement Learning (강화학습 기반 무인항공기 이동성 모델에 관한 연구)

  • Kyoung Hun Kim;Min Kyu Cho;Chang Young Park;Jeongho Kim;Soo Hyun Kim;Young Ghyu Sun;Jin Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.33-39
    • /
    • 2023
  • Recently, reinforcement learning has been used to improve the communication performance of flying ad-hoc networks (FANETs) and to design mobility models. Mobility model is a key factor for predicting and controlling the movement of unmmaned aerial vehicle (UAVs). In this paper, we designed and analyzed the performance of Q-learning with fourier basis function approximation and Deep-Q Network (DQN) models for optimal path finding in a three-dimensional virtual environment where UAVs operate. The experimental results show that the DQN model is more suitable for optimal path finding than the Q-learning model in a three-dimensional virtual environment.